2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379

A fluid dynamic model for supply chains

1. 

Department of Information Engineering and Applied Mathematics, University of Salerno, via Ponte Don Melillo, 84084 Fisciano (SA), Italy

2. 

Dipartimento di Ingegneria dell'Informazione e Matematica Applicata, University of Salerno, Via Ponte Don Melillo, 84084 - Fiscano (SA), Italy

Received  November 2005 Revised  March 2006 Published  July 2006

The paper deals with a fluid dynamic model for supply chains. A mixed continuum-discrete model is proposed and possible choices of solutions at nodes guaranteeing the conservation of fluxes are discussed. Fixing a rule a Riemann solver is defined and existence of solutions to Cauchy problems is proved.
Citation: Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks & Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379
[1]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[2]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[3]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[4]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks & Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

[5]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[6]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

[7]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[8]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[9]

Jing Shi, Tiaojun Xiao. Store assistance and coordination of supply chains facing consumer's return. Journal of Industrial & Management Optimization, 2016, 12 (3) : 991-1007. doi: 10.3934/jimo.2016.12.991

[10]

Tsan-Ming Choi. Quick response in fashion supply chains with dual information updating. Journal of Industrial & Management Optimization, 2006, 2 (3) : 255-268. doi: 10.3934/jimo.2006.2.255

[11]

Juliang Zhang, Jian Chen. Externality of contracts on supply chains with two suppliers and a common retailer. Journal of Industrial & Management Optimization, 2010, 6 (4) : 795-810. doi: 10.3934/jimo.2010.6.795

[12]

Masha Shunko, Srinagesh Gavirneni. Role of transfer prices in global supply chains with random demands. Journal of Industrial & Management Optimization, 2007, 3 (1) : 99-117. doi: 10.3934/jimo.2007.3.99

[13]

K. F. C. Yiu, L. L. Xie, K. L. Mak. Analysis of bullwhip effect in supply chains with heterogeneous decision models. Journal of Industrial & Management Optimization, 2009, 5 (1) : 81-94. doi: 10.3934/jimo.2009.5.81

[14]

Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i

[15]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[16]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[17]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[18]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[19]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[20]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

2016 Impact Factor: 1.2

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]