2007, 18(1): 53-70. doi: 10.3934/dcds.2007.18.53

The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, 730000, China, China

Received  March 2006 Revised  October 2006 Published  February 2007

For weakly damped non-autonomous hyperbolic equations, we introduce a new concept Condition (C*), denote the set of all functions satisfying Condition (C*) by L2 C* $(R;X)$ which are translation bounded but not translation compact in $L^2$ loc$(R;X)$, and show that there are many functions satisfying Condition (C*); then we study the uniform attractors for weakly damped non-autonomous hyperbolic equations with this new class of time dependent external forces $g(x,t)\in $ L2 C* $(R;X)$ and prove the existence of the uniform attractors for the family of processes corresponding to the equation in $H^1_0\times L^2$ and $D(A)\times H^1_0$.
Citation: Shan Ma, Chengkui Zhong. The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 53-70. doi: 10.3934/dcds.2007.18.53
[1]

Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781

[2]

Lan Wen. A uniform $C^1$ connecting lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257

[3]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[4]

Thierry Champion, Luigi De Pascale. On the twist condition and $c$-monotone transport plans. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1339-1353. doi: 10.3934/dcds.2014.34.1339

[5]

Salvador Addas-Zanata, Fábio A. Tal. Support of maximizing measures for typical $\mathcal{C}^0$ dynamics on compact manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 795-804. doi: 10.3934/dcds.2010.26.795

[6]

Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565

[7]

Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 643-663. doi: 10.3934/dcds.2008.21.643

[8]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[9]

P. Fabrie, C. Galusinski, A. Miranville. Uniform inertial sets for damped wave equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 393-418. doi: 10.3934/dcds.2000.6.393

[10]

Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) Existence and uniform boundedness. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 825-837. doi: 10.3934/dcdsb.2007.7.825

[11]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[12]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[13]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[14]

Jérôme Bertrand. Prescription of Gauss curvature on compact hyperbolic orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1269-1284. doi: 10.3934/dcds.2014.34.1269

[15]

Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747

[16]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[17]

Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627

[18]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[19]

Pierre Fabrie, Cedric Galusinski, A. Miranville, Sergey Zelik. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 211-238. doi: 10.3934/dcds.2004.10.211

[20]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]