2007, 4(3): 553-563. doi: 10.3934/mbe.2007.4.553

Resistance mechanisms matter in SIR models

1. 

Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States

2. 

Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, United States

Received  January 2007 Revised  April 2007 Published  May 2007

We compare four SIR-style models describing behavioral or immunological disease resistance that may be both partial and temporary in parameter regions feasible for interpandemic influenza. For the models studied, backward bifurcations and bistability may occur in contexts where resistance is due to behavior change, but they do not occur when resistance originates from an immune response. Care must be exercised to ensure that modeling assumptions about resistance are consistent with the biological mechanisms under study.
Citation: Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553
[1]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[2]

Sebastian Bonhoeffer, Pia Abel zur Wiesch, Roger D. Kouyos. Rotating antibiotics does not minimize selection for resistance. Mathematical Biosciences & Engineering, 2010, 7 (4) : 919-922. doi: 10.3934/mbe.2010.7.919

[3]

Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905-918. doi: 10.3934/mbe.2010.7.905

[4]

Donato Patrizia, Andrey Piatnitski. On the effective interfacial resistance through rough surfaces. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1295-1310. doi: 10.3934/cpaa.2010.9.1295

[5]

Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779

[6]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[7]

Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers. A model for transmission of partial resistance to anti-malarial drugs. Mathematical Biosciences & Engineering, 2009, 6 (3) : 649-661. doi: 10.3934/mbe.2009.6.649

[8]

Robert E. Beardmore, Rafael Peña-Miller. Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences & Engineering, 2010, 7 (3) : 527-552. doi: 10.3934/mbe.2010.7.527

[9]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[10]

Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1185-1206. doi: 10.3934/mbe.2016038

[11]

Daniel J. Kelleher, Hugo Panzo, Antoni Brzoska, Alexander Teplyaev. Dual graphs and modified Barlow-Bass resistance estimates for repeated barycentric subdivisions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 27-42. doi: 10.3934/dcdss.2019002

[12]

Andrew Yates, Robin Callard. Cell death and the maintenance of immunological memory. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 43-59. doi: 10.3934/dcdsb.2001.1.43

[13]

Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809

[14]

Grace Gao, Sasank Maganti, Karen A. Monsen. Older adults, frailty, and the social and behavioral determinants of health. Big Data & Information Analytics, 2017, 2 (5) : 1-12. doi: 10.3934/bdia.2017012

[15]

Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789

[16]

Sihem Mesnager, Gérard Cohen. Fast algebraic immunity of Boolean functions. Advances in Mathematics of Communications, 2017, 11 (2) : 373-377. doi: 10.3934/amc.2017031

[17]

Carlo Brugna, Giuseppe Toscani. Boltzmann-type models for price formation in the presence of behavioral aspects. Networks & Heterogeneous Media, 2015, 10 (3) : 543-557. doi: 10.3934/nhm.2015.10.543

[18]

Siyu Liu, Xue Yang, Yingjie Bi, Yong Li. Dynamic behavior and optimal scheduling for mixed vaccination strategy with temporary immunity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2018216

[19]

Liman Dai, Xingfu Zou. Effects of superinfection and cost of immunity on host-parasite co-evolution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 809-829. doi: 10.3934/dcdsb.2017040

[20]

Simeone Marino, Edoardo Beretta, Denise E. Kirschner. The role of delays in innate and adaptive immunity to intracellular bacterial infection. Mathematical Biosciences & Engineering, 2007, 4 (2) : 261-286. doi: 10.3934/mbe.2007.4.261

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]