
Previous Article
Heteroclinic connections in singularly perturbed systems
 DCDSB Home
 This Issue

Next Article
Minimal subsets of projective flows
Nonautonomous finitetime dynamics
1.  Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada 
2.  Department of Mathematics, Dresden University of Technology, 01062 Dresden, Germany, Germany 
[1] 
Arno Berger. On finitetime hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963981. doi: 10.3934/cpaa.2011.10.963 
[2] 
Fatiha AlabauBoussouira, Vincent Perrollaz, Lionel Rosier. Finitetime stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721742. doi: 10.3934/mcrf.2015.5.721 
[3] 
Jianjun Paul Tian. Finitetime perturbations of dynamical systems and applications to tumor therapy. Discrete & Continuous Dynamical Systems  B, 2009, 12 (2) : 469479. doi: 10.3934/dcdsb.2009.12.469 
[4] 
Shu Dai, Dong Li, Kun Zhao. Finitetime quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems  B, 2013, 18 (5) : 12751290. doi: 10.3934/dcdsb.2013.18.1275 
[5] 
Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finitetime blowup of solutions to some activatorinhibitor systems. Discrete & Continuous Dynamical Systems  A, 2016, 36 (9) : 49975010. doi: 10.3934/dcds.2016016 
[6] 
Emilija Bernackaitė, Jonas Šiaulys. The finitetime ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207222. doi: 10.3934/jimo.2016012 
[7] 
Tingting Su, Xinsong Yang. Finitetime synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 36553667. doi: 10.3934/dcdsb.2016115 
[8] 
Peter Giesl. Construction of a finitetime Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems  B, 2012, 17 (7) : 23872412. doi: 10.3934/dcdsb.2012.17.2387 
[9] 
Khalid Addi, Samir Adly, Hassan Saoud. Finitetime Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 10231038. doi: 10.3934/dcds.2011.31.1023 
[10] 
Gang Tian. Finitetime singularity of KählerRicci flow. Discrete & Continuous Dynamical Systems  A, 2010, 28 (3) : 11371150. doi: 10.3934/dcds.2010.28.1137 
[11] 
Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finitetime blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems  A, 2019, 39 (2) : 11711183. doi: 10.3934/dcds.2019050 
[12] 
Arno Berger. Counting uniformly attracting solutions of nonautonomous differential equations. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 1525. doi: 10.3934/dcdss.2008.1.15 
[13] 
Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems  A, 2007, 18 (2&3) : 375403. doi: 10.3934/dcds.2007.18.375 
[14] 
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems  A, 2006, 15 (2) : 579596. doi: 10.3934/dcds.2006.15.579 
[15] 
Hailong Zhu, Jifeng Chu, Weinian Zhang. Meansquare almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems  A, 2018, 38 (4) : 19351953. doi: 10.3934/dcds.2018078 
[16] 
Juan Luis Vázquez. Finitetime blowdown in the evolution of point masses by planar logarithmic diffusion. Discrete & Continuous Dynamical Systems  A, 2007, 19 (1) : 135. doi: 10.3934/dcds.2007.19.1 
[17] 
Rui Li, Yingjing Shi. Finitetime optimal consensus control for secondorder multiagent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929943. doi: 10.3934/jimo.2014.10.929 
[18] 
Ta T.H. Trang, Vu N. Phat, Adly Samir. Finitetime stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303315. doi: 10.3934/jimo.2016.12.303 
[19] 
Peter Giesl, James McMichen. Determination of the area of exponential attraction in onedimensional finitetime systems using meshless collocation. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 18351850. doi: 10.3934/dcdsb.2018094 
[20] 
YoungPil Choi, SeungYeal Ha, Jeongho Kim. Propagation of regularity and finitetime collisions for the thermomechanical CuckerSmale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379407. doi: 10.3934/nhm.2018017 
2017 Impact Factor: 0.972
Tools
Metrics
Other articles
by authors
[Back to Top]