• Previous Article
    Towards a mathematical theory of complex socio-economical systems by functional subsystems representation
  • KRM Home
  • This Issue
  • Next Article
    Qualitative analysis of the generalized Burnett equations and applications to half--space problems
2008, 1(2): 279-293. doi: 10.3934/krm.2008.1.279

Modelling and simulation of vehicular traffic jam formation

1. 

MIP UMR 5640, Université Paul Sabatier, Toulouse, France

2. 

Department of Mathematics, Politecnico di Torino, Italy

Received  March 2008 Revised  March 2008 Published  May 2008

This paper deals with the modelling and simulation of traffic flow phenomena at the macroscopic level, based on a suitable development of the Aw-Rascle model, [2], and its modification, [4], [5]. An acceleration term and a minimal velocity--dependent safety distance are introduced in the evolution equations. Then, an eulerian computational scheme is introduced to simulate the formation and evolution of jams. The results are compared with those obtained in [4], where a lagrangian computational method was used instead.
Citation: Pierre Degond, Marcello Delitala. Modelling and simulation of vehicular traffic jam formation. Kinetic & Related Models, 2008, 1 (2) : 279-293. doi: 10.3934/krm.2008.1.279
[1]

Christopher DuBois, Jesse Farnham, Eric Aaron, Ami Radunskaya. A multiple time-scale computational model of a tumor and its micro environment. Mathematical Biosciences & Engineering, 2013, 10 (1) : 121-150. doi: 10.3934/mbe.2013.10.121

[2]

Danilo T. Pérez-Rivera, Verónica L. Torres-Torres, Abraham E. Torres-Colón, Mayteé Cruz-Aponte. Development of a computational model of glucose toxicity in the progression of diabetes mellitus. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1043-1058. doi: 10.3934/mbe.2016029

[3]

Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175

[4]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

[5]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks & Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[6]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[7]

Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108

[8]

Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks & Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813

[9]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670

[10]

Aloev Rakhmatillo, Khudoyberganov Mirzoali, Blokhin Alexander. Construction and research of adequate computational models for quasilinear hyperbolic systems. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 277-289. doi: 10.3934/naco.2018017

[11]

Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527

[12]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[13]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[14]

Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401

[15]

Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060

[16]

Stefano Villa, Paola Goatin, Christophe Chalons. Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3921-3952. doi: 10.3934/dcdsb.2017202

[17]

Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681

[18]

Michael Herty, Adrian Fazekas, Giuseppe Visconti. A two-dimensional data-driven model for traffic flow on highways. Networks & Heterogeneous Media, 2018, 13 (2) : 217-240. doi: 10.3934/nhm.2018010

[19]

Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279

[20]

Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]