August  2008, 2(3): 317-333. doi: 10.3934/ipi.2008.2.317

An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions

1. 

Faculty of Applied Mathematics and Computer Science, Ivan Franko National University of Lviv, 79000 Lviv, Ukraine

2. 

School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Received  December 2007 Revised  June 2008 Published  July 2008

We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.
Citation: Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317
References:
[1]

G. Bastay, T. Johansson, V. A. Kozlov and D. Lesnic, An alternating method for the stationary Stokes system,, ZAMM, 86 (2006), 268.  doi: 10.1002/zamm.200410238.  Google Scholar

[2]

J. Baumeister and A. Leitāo, On iterative methods for solving ill-posed problems modeled by partial differential equations,, J. Inv. Ill-Posed Probl., 9 (2001), 13.   Google Scholar

[3]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations,, Amer. J. Math., 80 (1958), 16.  doi: 10.2307/2372819.  Google Scholar

[4]

T. Carleman, Sur un probléme d'unicité pur les systémes d'équations aux dérivées partielles á deux variables indépendantes, (French), Ark. Mat., 26 (1939), 1.   Google Scholar

[5]

R. Chapko and R. Kress, On a quadrature method for a logarithmic integral equation of the first kind, in "World Scientific Series in Applicable Analysis, Contributions in Numerical Mathematics,, Vol. 2'' (ed. Agarwal), 2 (1993), 127.   Google Scholar

[6]

H. W. Engl and A. Leitāo, A Mann iterative regularization method for elliptic Cauchy problems,, Numer. Funct. Anal. Optim., 22 (2001), 861.  doi: 10.1081/NFA-100108313.  Google Scholar

[7]

U. Hämarik and T. Raus, On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data,, J. Inverse Ill-Posed Probl., 14 (2006), 251.  doi: 10.1515/156939406777340928.  Google Scholar

[8]

M. A. Jawson and G. Symm, "Integral Equations Methods in Potential Theory and Elastostatics,'', Academic Press, (1977).   Google Scholar

[9]

M. Jourhmane and A. Nachaoui, An alternating method for an inverse Cauchy problem,, Numer. Algorithms, 21 (1999), 247.  doi: 10.1023/A:1019134102565.  Google Scholar

[10]

V. A. Kozlov and V. G. Maz'ya, On iterative procedures for solving ill-posed boundary value problems that preserve differential equations,, Algebra i Analiz, 1 (1989), 144.   Google Scholar

[11]

V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations,, Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 64.   Google Scholar

[12]

R. Kress, "Linear Integral Equations,", 2nd edition, (1999).   Google Scholar

[13]

D. Lesnic, L. Elliot and D. B. Ingham, An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation,, Eng. Anal. Bound. Elem., 20 (1997), 123.  doi: 10.1016/S0955-7997(97)00056-8.  Google Scholar

[14]

W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations,'', Cambridge University Press, (2000).   Google Scholar

[15]

D. Maxwell, M. Truffer, S. Avdonin and M. Stuefer, Determining glacier velocities and stresses with inverse methods: an iterative scheme,, to appear in Journal of Glaciology., ().   Google Scholar

[16]

C. Miranda, "Partial Differential Equations of Elliptic Type,'', Springer-Verlag, (1970).   Google Scholar

[17]

A. Polyanin, "Handbook of Linear Partial Differential Equations for Engineers and Scientists,'', Chapman & Hall/CRC Press, (2002).   Google Scholar

[18]

F. Stenger, "Numerical Methods Based on Sinc and Analytic Functions,'', Springer-Verlag, (1993).   Google Scholar

[19]

G. M. Vainikko and A. Y. Veretennikov, "Iteration Procedures in Ill-Posed Problems,'', Nauka Publ., (1986).   Google Scholar

show all references

References:
[1]

G. Bastay, T. Johansson, V. A. Kozlov and D. Lesnic, An alternating method for the stationary Stokes system,, ZAMM, 86 (2006), 268.  doi: 10.1002/zamm.200410238.  Google Scholar

[2]

J. Baumeister and A. Leitāo, On iterative methods for solving ill-posed problems modeled by partial differential equations,, J. Inv. Ill-Posed Probl., 9 (2001), 13.   Google Scholar

[3]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations,, Amer. J. Math., 80 (1958), 16.  doi: 10.2307/2372819.  Google Scholar

[4]

T. Carleman, Sur un probléme d'unicité pur les systémes d'équations aux dérivées partielles á deux variables indépendantes, (French), Ark. Mat., 26 (1939), 1.   Google Scholar

[5]

R. Chapko and R. Kress, On a quadrature method for a logarithmic integral equation of the first kind, in "World Scientific Series in Applicable Analysis, Contributions in Numerical Mathematics,, Vol. 2'' (ed. Agarwal), 2 (1993), 127.   Google Scholar

[6]

H. W. Engl and A. Leitāo, A Mann iterative regularization method for elliptic Cauchy problems,, Numer. Funct. Anal. Optim., 22 (2001), 861.  doi: 10.1081/NFA-100108313.  Google Scholar

[7]

U. Hämarik and T. Raus, On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data,, J. Inverse Ill-Posed Probl., 14 (2006), 251.  doi: 10.1515/156939406777340928.  Google Scholar

[8]

M. A. Jawson and G. Symm, "Integral Equations Methods in Potential Theory and Elastostatics,'', Academic Press, (1977).   Google Scholar

[9]

M. Jourhmane and A. Nachaoui, An alternating method for an inverse Cauchy problem,, Numer. Algorithms, 21 (1999), 247.  doi: 10.1023/A:1019134102565.  Google Scholar

[10]

V. A. Kozlov and V. G. Maz'ya, On iterative procedures for solving ill-posed boundary value problems that preserve differential equations,, Algebra i Analiz, 1 (1989), 144.   Google Scholar

[11]

V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations,, Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 64.   Google Scholar

[12]

R. Kress, "Linear Integral Equations,", 2nd edition, (1999).   Google Scholar

[13]

D. Lesnic, L. Elliot and D. B. Ingham, An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation,, Eng. Anal. Bound. Elem., 20 (1997), 123.  doi: 10.1016/S0955-7997(97)00056-8.  Google Scholar

[14]

W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations,'', Cambridge University Press, (2000).   Google Scholar

[15]

D. Maxwell, M. Truffer, S. Avdonin and M. Stuefer, Determining glacier velocities and stresses with inverse methods: an iterative scheme,, to appear in Journal of Glaciology., ().   Google Scholar

[16]

C. Miranda, "Partial Differential Equations of Elliptic Type,'', Springer-Verlag, (1970).   Google Scholar

[17]

A. Polyanin, "Handbook of Linear Partial Differential Equations for Engineers and Scientists,'', Chapman & Hall/CRC Press, (2002).   Google Scholar

[18]

F. Stenger, "Numerical Methods Based on Sinc and Analytic Functions,'', Springer-Verlag, (1993).   Google Scholar

[19]

G. M. Vainikko and A. Y. Veretennikov, "Iteration Procedures in Ill-Posed Problems,'', Nauka Publ., (1986).   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[3]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[4]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[7]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[8]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[9]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[10]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[11]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[12]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[13]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[16]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[17]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[18]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[19]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[20]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]