2008, 2(3): 355-372. doi: 10.3934/ipi.2008.2.355

Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem

1. 

Institut für Mathematik, Johannes Gutenberg-Universität Maint, 55099 Mainz

2. 

Institute of Mathematics, Helsinki University of Technology, FI-02015 HUT

Received  December 2007 Revised  June 2008 Published  July 2008

In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.
Citation: Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355
References:
[1]

S. R. Arridge, Optical tomography in medical imaging,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/2/022.

[2]

S. R. Arridge and W. R. B. Lionheart, Nonuniqueness in diffusion-based optical tomography,, Opt. Lett., 23 (1998), 882. doi: 10.1364/OL.23.000882.

[3]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane,, Ann. of Math., 163 (2006), 265. doi: 10.4007/annals.2006.163.265.

[4]

G. Bal, Reconstructions in impedance and optical tomography with singular interfaces,, Inverse Problems, 21 (2005), 113. doi: 10.1088/0266-5611/21/1/008.

[5]

M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography,, Inverse Problems, 16 (2000), 1029. doi: 10.1088/0266-5611/16/4/310.

[6]

M. Brühl, Explicit characterization of inclusions in electrical impedance tomography,, SIAM J. Math. Anal., 32 (2001), 1327. doi: 10.1137/S003614100036656X.

[7]

J. Diestel and J. J. Uhl, "Vector Measures,'' vol. 15 of Mathematical Surveys,, American Mathematical Society, (1977).

[8]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,'' vol. 375 of Mathematics and Its Applications,, Kluwer Academic Publishers, (1996).

[9]

F. Frühauf, B. Gebauer and O. Scherzer, Detecting interfaces in a parabolic-elliptic problem from surface measurements,, SIAM J. Numer. Anal., 45 (2007), 810. doi: 10.1137/050641545.

[10]

B. Gebauer, M. Hanke, A. Kirsch, W. Muniz and C. Schneider, A sampling method for detecting buried objects using electromagnetic scattering,, Inverse Problems, 21 (2005), 2035. doi: 10.1088/0266-5611/21/6/015.

[11]

B. Gebauer, The factorization method for real elliptic problems,, Z. Anal. Anwend., 25 (2006), 81. doi: 10.4171/ZAA/1279.

[12]

B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography,, Inverse Problems, 23 (2007), 2159. doi: 10.1088/0266-5611/23/5/020.

[13]

M. Hanke and M. Brühl, Recent progress in electrical, impedance tomography, 19 (2003). doi: 10.1088/0266-5611/19/6/055.

[14]

J. Heino and E. Somersalo, Estimation of optical absorption in anisotropic background,, Inverse Problems, 18 (2002), 559. doi: 10.1088/0266-5611/18/3/304.

[15]

N. Hyvönen, Characterizing inclusions in optical tomography,, Inverse Problems, 20 (2004), 737. doi: 10.1088/0266-5611/20/3/006.

[16]

N. Hyvönen, Application of a weaker formulation of the factorization method to the characterization of absorbing inclusions in optical tomography,, Inverse Problems, 21 (2005), 1331. doi: 10.1088/0266-5611/21/4/009.

[17]

N. Hyvönen, Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography,, Adv. in Appl. Math., 39 (2007), 197. doi: 10.1016/j.aam.2006.12.004.

[18]

N. Hyvönen, Locating transparent regions in optical absorption and scattering tomography,, SIAM J. Appl. Math., 67 (2007), 1101. doi: 10.1137/06066299X.

[19]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009.

[20]

A. Kirsch, The factorization method for a class of inverse elliptic problems,, Math. Nachr., 278 (2005), 258. doi: 10.1002/mana.200310239.

[21]

S. Kusiak and J. Sylvester, The scattering support,, Comm. Pure Appl. Math., 56 (2003), 1525. doi: 10.1002/cpa.3038.

[22]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71. doi: 10.2307/2118653.

[23]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291.

show all references

References:
[1]

S. R. Arridge, Optical tomography in medical imaging,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/2/022.

[2]

S. R. Arridge and W. R. B. Lionheart, Nonuniqueness in diffusion-based optical tomography,, Opt. Lett., 23 (1998), 882. doi: 10.1364/OL.23.000882.

[3]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane,, Ann. of Math., 163 (2006), 265. doi: 10.4007/annals.2006.163.265.

[4]

G. Bal, Reconstructions in impedance and optical tomography with singular interfaces,, Inverse Problems, 21 (2005), 113. doi: 10.1088/0266-5611/21/1/008.

[5]

M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography,, Inverse Problems, 16 (2000), 1029. doi: 10.1088/0266-5611/16/4/310.

[6]

M. Brühl, Explicit characterization of inclusions in electrical impedance tomography,, SIAM J. Math. Anal., 32 (2001), 1327. doi: 10.1137/S003614100036656X.

[7]

J. Diestel and J. J. Uhl, "Vector Measures,'' vol. 15 of Mathematical Surveys,, American Mathematical Society, (1977).

[8]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,'' vol. 375 of Mathematics and Its Applications,, Kluwer Academic Publishers, (1996).

[9]

F. Frühauf, B. Gebauer and O. Scherzer, Detecting interfaces in a parabolic-elliptic problem from surface measurements,, SIAM J. Numer. Anal., 45 (2007), 810. doi: 10.1137/050641545.

[10]

B. Gebauer, M. Hanke, A. Kirsch, W. Muniz and C. Schneider, A sampling method for detecting buried objects using electromagnetic scattering,, Inverse Problems, 21 (2005), 2035. doi: 10.1088/0266-5611/21/6/015.

[11]

B. Gebauer, The factorization method for real elliptic problems,, Z. Anal. Anwend., 25 (2006), 81. doi: 10.4171/ZAA/1279.

[12]

B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography,, Inverse Problems, 23 (2007), 2159. doi: 10.1088/0266-5611/23/5/020.

[13]

M. Hanke and M. Brühl, Recent progress in electrical, impedance tomography, 19 (2003). doi: 10.1088/0266-5611/19/6/055.

[14]

J. Heino and E. Somersalo, Estimation of optical absorption in anisotropic background,, Inverse Problems, 18 (2002), 559. doi: 10.1088/0266-5611/18/3/304.

[15]

N. Hyvönen, Characterizing inclusions in optical tomography,, Inverse Problems, 20 (2004), 737. doi: 10.1088/0266-5611/20/3/006.

[16]

N. Hyvönen, Application of a weaker formulation of the factorization method to the characterization of absorbing inclusions in optical tomography,, Inverse Problems, 21 (2005), 1331. doi: 10.1088/0266-5611/21/4/009.

[17]

N. Hyvönen, Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography,, Adv. in Appl. Math., 39 (2007), 197. doi: 10.1016/j.aam.2006.12.004.

[18]

N. Hyvönen, Locating transparent regions in optical absorption and scattering tomography,, SIAM J. Appl. Math., 67 (2007), 1101. doi: 10.1137/06066299X.

[19]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009.

[20]

A. Kirsch, The factorization method for a class of inverse elliptic problems,, Math. Nachr., 278 (2005), 258. doi: 10.1002/mana.200310239.

[21]

S. Kusiak and J. Sylvester, The scattering support,, Comm. Pure Appl. Math., 56 (2003), 1525. doi: 10.1002/cpa.3038.

[22]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. of Math., 143 (1996), 71. doi: 10.2307/2118653.

[23]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153. doi: 10.2307/1971291.

[1]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[2]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[3]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[4]

Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43

[5]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[6]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

[7]

Santiago Cano-Casanova. Coercivity of elliptic mixed boundary value problems in annulus of $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3819-3839. doi: 10.3934/dcds.2012.32.3819

[8]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[9]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

[10]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[11]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[12]

Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347

[13]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[14]

Thorsten Hohage, Mihaela Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Problems & Imaging, 2008, 2 (2) : 271-290. doi: 10.3934/ipi.2008.2.271

[15]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[16]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[17]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[18]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[19]

Xiao-Yu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear two-point boundary value problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 31-43. doi: 10.3934/naco.2012.2.31

[20]

Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 51-68. doi: 10.3934/jgm.2010.2.51

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]