# American Institute of Mathematical Sciences

2008, 1(3): 405-414. doi: 10.3934/krm.2008.1.405

## A new regularization possibility for the Boltzmann equation with soft potentials

 1 LAMA UMR 8050, Faculté de Sciences et Technologies, Université Paris Est, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France

Received  June 2008 Revised  June 2008 Published  August 2008

We consider a simplified Boltzmann equation: spatially homogeneous, two-dimensional, radially symmetric, with Grad's angular cutoff, and linearized around its initial condition. We prove that for a sufficiently singular velocity cross section, the solution may become instantaneously a function, even if the initial condition is a singular measure. To our knowledge, this is the first regularization result in the case with cutoff: all the previous results were relying on the non-integrability of the angular cross section. Furthermore, our result is quite surprising: the regularization occurs for initial conditions that are not too singular, but also not too regular. The objective of the present work is to explain that the singularity of the velocity cross section, which is often considered as a (technical) obstacle to regularization, seems on the contrary to help the regularization.
Citation: Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic & Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405
 [1] Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic & Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919 [2] Yingzhe Fan, Yuanjie Lei. The Boltzmann equation with frictional force for very soft potentials in the whole space. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4303-4329. doi: 10.3934/dcds.2019174 [3] Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020 [4] Léo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2016, 9 (2) : 299-371. doi: 10.3934/krm.2016.9.299 [5] Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic & Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453 [6] Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187 [7] Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024 [8] Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic & Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159 [9] Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic & Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617 [10] Yong-Kum Cho. On the homogeneous Boltzmann equation with soft-potential collision kernels. Kinetic & Related Models, 2015, 8 (2) : 309-333. doi: 10.3934/krm.2015.8.309 [11] Yong-Kum Cho, Hera Yun. On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials. Kinetic & Related Models, 2012, 5 (4) : 769-786. doi: 10.3934/krm.2012.5.769 [12] Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic & Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036 [13] Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic & Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383 [14] Kevin Zumbrun. L∞ resolvent bounds for steady Boltzmann's Equation. Kinetic & Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048 [15] Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic & Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277 [16] Nadia Lekrine, Chao-Jiang Xu. Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation. Kinetic & Related Models, 2009, 2 (4) : 647-666. doi: 10.3934/krm.2009.2.647 [17] C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic & Related Models, 2010, 3 (2) : 335-351. doi: 10.3934/krm.2010.3.335 [18] Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068 [19] Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems & Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019 [20] Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

2017 Impact Factor: 1.219