# American Institute of Mathematical Sciences

2009, 3(1): 87-122. doi: 10.3934/ipi.2009.3.87

## Discretization-invariant Bayesian inversion and Besov space priors

 1 Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68 (Gustaf Hallstromin katu 2b) FI-00014, Finland, Finland 2 Tampere University of Technology,Institute of Mathematics,, P.O. Box 553, 33101 Tampere

Received  February 2008 Revised  November 2008 Published  February 2009

Bayesian solution of an inverse problem for indirect measurement $M = AU +$ε is considered, where $U$ is a function on a domain of $\R^d$. Here $A$ is a smoothing linear operator and ε is Gaussian white noise. The data is a realization $m_k$ of the random variable $M_k = P_kA U+P_k$ε , where $P_k$ is a linear, finite dimensional operator related to measurement device. To allow computerized inversion, the unknown is discretized as $U_n=T_nU$, where $T_n$ is a finite dimensional projection, leading to the computational measurement model $M_{kn}=P_k A U_n + P_k$ε . Bayes formula gives then the posterior distribution

$\pi_{kn}(u_n\|\m_{kn})$~ Π n $(u_n)\exp(-\frac{1}{2}$||$\m_{kn} - P_kA u_n$||$\_2^2)$

in $\R^d$, and the mean $\u_{kn}$:$=\int u_n \ \pi_{kn}(u_n\|\m_k)\ du_n$ is considered as the reconstruction of $U$. We discuss a systematic way of choosing prior distributions Π n for all $n\geq n_0>0$ by achieving them as projections of a distribution in a infinite-dimensional limit case. Such choice of prior distributions is discretization-invariant in the sense that Π n represent the same a priori information for all $n$ and that the mean $\u_{kn}$ converges to a limit estimate as $k,n$→$\infty$. Gaussian smoothness priors and wavelet-based Besov space priors are shown to be discretization invariant. In particular, Bayesian inversion in dimension two with $B^1_11$ prior is related to penalizing the $\l^1$ norm of the wavelet coefficients of $U$.

Citation: Matti Lassas, Eero Saksman, Samuli Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Problems & Imaging, 2009, 3 (1) : 87-122. doi: 10.3934/ipi.2009.3.87
 [1] Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561 [2] Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183 [3] Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27 [4] Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 [5] Tan Bui-Thanh, Quoc P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems. Inverse Problems & Imaging, 2016, 10 (4) : 943-975. doi: 10.3934/ipi.2016028 [6] Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems & Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649 [7] Igor E. Shparlinski. Close values of shifted modular inversions and the decisional modular inversion hidden number problem. Advances in Mathematics of Communications, 2015, 9 (2) : 169-176. doi: 10.3934/amc.2015.9.169 [8] Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems & Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399 [9] Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17 [10] Frank Natterer. Photo-acoustic inversion in convex domains. Inverse Problems & Imaging, 2012, 6 (2) : 315-320. doi: 10.3934/ipi.2012.6.315 [11] Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011 [12] Liying Wang, Weiguo Zhao, Dan Zhang, Linming Zhao. A geometric inversion algorithm for parameters calculation in Francis turbine. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1373-1384. doi: 10.3934/dcdss.2015.8.1373 [13] Peter Kuchment, Fatma Terzioglu. Inversion of weighted divergent beam and cone transforms. Inverse Problems & Imaging, 2017, 11 (6) : 1071-1090. doi: 10.3934/ipi.2017049 [14] Laura Poggiolini, Marco Spadini. Local inversion of a class of piecewise regular maps. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2207-2224. doi: 10.3934/cpaa.2018105 [15] T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. Inverse Problems & Imaging, 2017, 11 (5) : 857-874. doi: 10.3934/ipi.2017040 [16] Josep M. Olm, Xavier Ros-Oton. Approximate tracking of periodic references in a class of bilinear systems via stable inversion. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 197-215. doi: 10.3934/dcdsb.2011.15.197 [17] Eric Bedford, Kyounghee Kim. Degree growth of matrix inversion: Birational maps of symmetric, cyclic matrices. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 977-1013. doi: 10.3934/dcds.2008.21.977 [18] Pavel Krejčí. The Preisach hysteresis model: Error bounds for numerical identification and inversion. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 101-119. doi: 10.3934/dcdss.2013.6.101 [19] YunKyong Hyon, James E. Fonseca, Bob Eisenberg, Chun Liu. Energy variational approach to study charge inversion (layering) near charged walls. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2725-2743. doi: 10.3934/dcdsb.2012.17.2725 [20] Zoltán Horváth, Yunfei Song, Tamás Terlaky. Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2997-3013. doi: 10.3934/dcds.2015.35.2997

2017 Impact Factor: 1.465