2009, 12(2): 481-493. doi: 10.3934/dcdsb.2009.12.481

Daphnia species invasion, competitive exclusion, and chaotic coexistence

1. 

School of Mathematics and School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0160, United States

2. 

School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States, United States

3. 

Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804

Received  September 2008 Revised  April 2009 Published  July 2009

The cladoceran Daphnia lumholtzi has invaded many US rivers and lakes. To better understand the ecological factors and consequences associated with D. lumholtzi invasion, we carried out a microcosm experiment evaluating competition of D. lumholtzi with a widespread native daphnid, D. pulex. We applied two light treatments to these two different microcosms and found strong context-dependent competitive exclusion in both treatments. We observed that D. lumholtzi out-competed D. pulex in the high light treatment, while D. pulex out-competed D. lumholtzi in the low light treatment. To better understand these results we developed and tested a mechanistically formulated stoichiometric population interaction model. This model exhibits chaotic coexistence of the competing species of Daphnia. The rich dynamics of this model allow us to suggest some plausible strategies to control the invasive species D. lumholtzi.
Citation: Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481
[1]

M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

[2]

Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057

[3]

Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683

[4]

Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1

[5]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[6]

Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175

[7]

Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (4) : 901-931. doi: 10.3934/mbe.2017048

[8]

Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2018136

[9]

Charlotte Beauthier, Joseph J. Winkin, Denis Dochain. Input/state invariant LQ-optimal control: Application to competitive coexistence in a chemostat. Evolution Equations & Control Theory, 2015, 4 (2) : 143-158. doi: 10.3934/eect.2015.4.143

[10]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[11]

Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221

[12]

Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-10. doi: 10.3934/jimo.2018054

[13]

Kaifa Wang, Yang Kuang. Novel dynamics of a simple Daphnia-microparasite model with dose-dependent infection. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1599-1610. doi: 10.3934/dcdss.2011.4.1599

[14]

Kentarou Fujie, Akio Ito, Michael Winkler, Tomomi Yokota. Stabilization in a chemotaxis model for tumor invasion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 151-169. doi: 10.3934/dcds.2016.36.151

[15]

Meng Fan, Bingbing Zhang, Michael Yi Li. Mechanisms for stable coexistence in an insect community. Mathematical Biosciences & Engineering, 2010, 7 (3) : 603-622. doi: 10.3934/mbe.2010.7.603

[16]

Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 609-628. doi: 10.3934/dcdsb.2018036

[17]

Dawan Mustafa, Bernt Wennberg. Chaotic distributions for relativistic particles. Kinetic & Related Models, 2016, 9 (4) : 749-766. doi: 10.3934/krm.2016014

[18]

José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269

[19]

Leonid A. Bunimovich. Chaotic and nonchaotic mushrooms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 63-74. doi: 10.3934/dcds.2008.22.63

[20]

Piotr Oprocha. Coherent lists and chaotic sets. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 797-825. doi: 10.3934/dcds.2011.31.797

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (8)

[Back to Top]