• Previous Article
    Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm
  • IPI Home
  • This Issue
  • Next Article
    A support theorem for the geodesic ray transform of symmetric tensor fields
August  2009, 3(3): 465-486. doi: 10.3934/ipi.2009.3.465

Perfect and almost perfect pulse compression codes for range spread radar targets

1. 

University of Oulu, Sodankylä Geophysical Observatory, Sodankylä, Finland

2. 

Washera Geospace and Radar Science Laboratory, Bahir Dar University, P.O.Box, 79, Bahir Dar, Gojjam, Ethiopia

3. 

Department of Mathematics and Statistics, University of Helsinki, FI-00014, Helsinki, Finland

4. 

Sodankylä Geophysical Observatory, University of Oulu, Tähteläntie 62, FIN-99600 Sodankylä, Finland

Received  October 2008 Revised  February 2009 Published  July 2009

It is well known that a matched filter gives the maximum possible output signal-to-noise ratio (SNR) when the input is a scattering signal from a point like radar target in the presence of white noise. However, a matched filter produces unwanted sidelobes that can mask vital information. Several researchers have presented various methods of dealing with this problem. They have employed different kinds of less optimal filters in terms of the output SNR from a point-like target than that of the matched filter. In this paper we present a method of designing codes, called perfect and almost perfect pulse compression codes, that do not create unwanted sidelobes when they are convolved with the corresponding matched filter. We present a method of deriving these types of codes from any binary phase radar codes that do not contain zeros in the frequency domain. Also, we introduce a heuristic algorithm that can be used to design almost perfect codes, which are more suitable for practical implementation in a radar system. The method is demonstrated by deriving some perfect and almost perfect pulse compression codes from some binary codes. A rigorous method of comparing the performance of almost perfect codes (truncated) with that of perfect codes is presented.
Citation: Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems & Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465
[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[5]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[6]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[7]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[10]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

[11]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (6)

[Back to Top]