
Previous Article
Asymptotic behavior of stochastic PDEs with random coefficients
 DCDS Home
 This Issue

Next Article
Long time behavior and attractors for energetically insulated fluid systems
Group foliation of equations in geophysical fluid dynamics
1.  College of Oceanic and Atmospheric Sciences, 104 COAS Admin Bldg, Oregon State University, Corvallis, OR 973315503, United States, United States 
2.  Department of Mathematics, Oregon State University, Corvallis, OR 973314605, United States 
[1] 
L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 6877. doi: 10.3934/proc.2003.2003.68 
[2] 
Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 150. doi: 10.3934/jgm.2010.2.1 
[3] 
Eugenii Shustin. Dynamics of oscillations in a multidimensional delay differential system. Discrete & Continuous Dynamical Systems  A, 2004, 11 (2&3) : 557576. doi: 10.3934/dcds.2004.11.557 
[4] 
Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 13451360. doi: 10.3934/cpaa.2011.10.1345 
[5] 
Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 19251932. doi: 10.3934/cpaa.2009.8.1925 
[6] 
Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete & Continuous Dynamical Systems  A, 2018, 0 (0) : 111. doi: 10.3934/dcds.2018121 
[7] 
Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295309. doi: 10.3934/amc.2009.3.295 
[8] 
Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 11211134. doi: 10.3934/cpaa.2017054 
[9] 
ChiuYa Lan, ChiKun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems  A, 2004, 11 (1) : 161188. doi: 10.3934/dcds.2004.11.161 
[10] 
Yingshu Lü. Symmetry and nonexistence of solutions to an integral system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 807821. doi: 10.3934/cpaa.2018041 
[11] 
Mahesh Nerurkar. Forced linear oscillators and the dynamics of Euclidean group extensions. Discrete & Continuous Dynamical Systems  S, 2016, 9 (4) : 12011234. doi: 10.3934/dcdss.2016049 
[12] 
Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems & Imaging, 2014, 8 (1) : 2351. doi: 10.3934/ipi.2014.8.23 
[13] 
Urszula Foryś, Jan Poleszczuk. A delaydifferential equation model of HIV related cancerimmune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627641. doi: 10.3934/mbe.2011.8.627 
[14] 
Mohamed Baouch, Juan Antonio LópezRamos, Blas Torrecillas, Reto Schnyder. An active attack on a distributed Group Key Exchange system. Advances in Mathematics of Communications, 2017, 11 (4) : 715717. doi: 10.3934/amc.2017052 
[15] 
M. Jotz. The leaf space of a multiplicative foliation. Journal of Geometric Mechanics, 2012, 4 (3) : 313332. doi: 10.3934/jgm.2012.4.313 
[16] 
Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems  B, 2012, 17 (2) : 699733. doi: 10.3934/dcdsb.2012.17.699 
[17] 
Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems  S, 2014, 7 (2) : ii. doi: 10.3934/dcdss.2014.7.2i 
[18] 
A. V. Borisov, I.S. Mamaev, S. M. Ramodanov. Dynamics of two interacting circular cylinders in perfect fluid. Discrete & Continuous Dynamical Systems  A, 2007, 19 (2) : 235253. doi: 10.3934/dcds.2007.19.235 
[19] 
Igor Freire, Ben Muatjetjeja. Symmetry analysis of a LaneEmdenKleinGordonFock system with central symmetry. Discrete & Continuous Dynamical Systems  S, 2018, 11 (4) : 667673. doi: 10.3934/dcdss.2018041 
[20] 
Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and nonexistence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 11251141. doi: 10.3934/dcds.2016.36.1125 
2017 Impact Factor: 1.179
Tools
Metrics
Other articles
by authors
[Back to Top]