`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations

Pages: 1505 - 1554, Volume 28, Issue 4, December 2010      doi:10.3934/dcds.2010.28.1505

 
       Abstract        Full Text (2722.6K)       Related Articles

Jeremy L. Marzuola - Department of Applied Physics and Applied Mathematics, Columbia University, 200 S. W. Mudd, 500 W. 120th St., New York City, NY 10027, United States (email)
Michael I. Weinstein - Department of Applied Physics and Applied Mathematics, Columbia University, 200 S. W. Mudd, 500 W. 120th St., New York City, NY 10027, United States (email)

Abstract: Schrödinger / Gross-Pitaevskii equations (NLS/GP) with a focusing (attractive) nonlinear potential and symmetric double well linear potential. NLS/GP plays a central role in the modeling of nonlinear optical and mean-field quantum many-body phenomena. It is known that there is a critical $L^2$ norm (optical power / particle number) at which there is a symmetry breaking bifurcation of the ground state. We study the rich dynamical behavior near the symmetry breaking point. The source of this behavior in the full Hamiltonian PDE is related to the dynamics of a finite-dimensional Hamiltonian reduction. We derive this reduction, analyze a part of its phase space and prove a shadowing theorem on the persistence of solutions, with oscillating mass-transport between wells, on very long, but finite, time scales within the full NLS/GP. The infinite time dynamics for NLS/GP are expected to depart, from the finite dimensional reduction, due to resonant coupling of discrete and continuum / radiation modes.

Keywords:  Nonlinear Schrödinger equation, Double Well Potential.
Mathematics Subject Classification:  Primary: 35Q55, 35Q60.

Received: October 2009;      Revised: February 2010;      Published: June 2010.