2010, 5(3): 385-404. doi: 10.3934/nhm.2010.5.385

Small solids in an inviscid fluid

1. 

Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 25030 Besançon Cedex, France

2. 

Laboratoire de mathématiques, Université Paris-Sud, 91405 Orsay cedex, France

3. 

UMR 7598 Laboratoire J.-L. Lions, UPMC Univ Paris 06, Paris, F-75005, France

4. 

Institut Élie Cartan UMR 7502, INRIA, Nancy-Université, CNRS, 54506 Vandoeuvre-lès-Nancy Cedex, France

Received  January 2010 Revised  June 2010 Published  July 2010

We present in this paper several results concerning a simple model of interaction between an inviscid fluid, modeled by the Burgers equation, and a particle, assumed to be point-wise. It is composed by a first-order partial differential equation which involves a singular source term and by an ordinary differential equation. The coupling is ensured through a drag force that can be linear or quadratic. Though this model can be considered as a simple one, its mathematical analysis is involved. We put forward a notion of entropy solution to our model, define a Riemann solver and make first steps towards well-posedness results. The main goal is to construct easy-to-implement and yet reliable numerical approximation methods; we design several finite volume schemes, which are analyzed and tested.
Citation: Boris Andreianov, Frédéric Lagoutière, Nicolas Seguin, Takéo Takahashi. Small solids in an inviscid fluid. Networks & Heterogeneous Media, 2010, 5 (3) : 385-404. doi: 10.3934/nhm.2010.5.385
[1]

Boris Andreianov, Nicolas Seguin. Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1939-1964. doi: 10.3934/dcds.2012.32.1939

[2]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[3]

Laurent Gosse. Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension. Kinetic & Related Models, 2012, 5 (2) : 283-323. doi: 10.3934/krm.2012.5.283

[4]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[5]

Johannes Elschner, George C. Hsiao, Andreas Rathsfeld. An inverse problem for fluid-solid interaction. Inverse Problems & Imaging, 2008, 2 (1) : 83-120. doi: 10.3934/ipi.2008.2.83

[6]

Peter Monk, Virginia Selgas. An inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2009, 3 (2) : 173-198. doi: 10.3934/ipi.2009.3.173

[7]

Francesca Bucci, Irena Lasiecka. Regularity of boundary traces for a fluid-solid interaction model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 505-521. doi: 10.3934/dcdss.2011.4.505

[8]

Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793

[9]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[10]

Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465

[11]

David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure & Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143

[12]

Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307

[13]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[14]

Andrey Sarychev. Controllability of the cubic Schroedinger equation via a low-dimensional source term. Mathematical Control & Related Fields, 2012, 2 (3) : 247-270. doi: 10.3934/mcrf.2012.2.247

[15]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[16]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[17]

Stuart S. Antman, David Bourne. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part I: Formulation, Analysis, and Computations. Communications on Pure & Applied Analysis, 2009, 8 (1) : 123-142. doi: 10.3934/cpaa.2009.8.123

[18]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[19]

Andrey Sarychev. Errata: Controllability of the cubic Schroedinger equation via a low-dimensional source term. Mathematical Control & Related Fields, 2014, 4 (2) : 261-261. doi: 10.3934/mcrf.2014.4.261

[20]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (5)

[Back to Top]