2010, 14(3): 871-905. doi: 10.3934/dcdsb.2010.14.871

Chaos and quasi-periodicity in diffeomorphisms of the solid torus

1. 

Dept. of Mathematics, University of Groningen, Blauwborgje 3, 9747 AC Groningen, Netherlands

2. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona

3. 

College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, EX4 4QF, Exeter

Received  September 2009 Revised  March 2010 Published  July 2010

This paper focuses on the parametric abundance and the 'Cantorial' persistence under perturbations of a recently discovered class of strange attractors for diffeomorphisms, the so-called quasi-periodic Hénon-like. Such attractors were first detected in the Poincaré map of a periodically driven model of the atmospheric flow: they were characterised by marked quasi-periodic intermittency and by $\Lambda_1>0,\Lambda_2\approx0$, where $\Lambda_1$ and $\Lambda_2$ are the two largest Lyapunov exponents. It was also conjectured that these attractors coincide with the closure of the unstable manifold of a hyperbolic invariant circle of saddle-type.
    This type of attractor is here investigated in a model map of the solid torus, constructed by a skew coupling of the Hénon family of planar maps with the Arnol$'$d family of circle maps. It is proved that Hénon-like strange attractors occur in certain parameter domains. Numerical evidence is produced, suggesting that quasi-periodic circle attractors and quasi-periodic Hénon-like attractors persist in relatively large subsets of the parameter space. We also discuss two problems in the numerical identification of so-called strange nonchaotic attractors and the persistence of all these classes of attractors under perturbation of the skew product structure.
Citation: Henk W. Broer, Carles Simó, Renato Vitolo. Chaos and quasi-periodicity in diffeomorphisms of the solid torus. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 871-905. doi: 10.3934/dcdsb.2010.14.871
[1]

Vanderlei Horita, Nivaldo Muniz. Basin problem for Hénon-like attractors in arbitrary dimensions. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 481-504. doi: 10.3934/dcds.2006.15.481

[2]

Zhicong Liu. SRB attractors with intermingled basins for non-hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1545-1562. doi: 10.3934/dcds.2013.33.1545

[3]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

[4]

Maciej J. Capiński, Piotr Zgliczyński. Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 641-670. doi: 10.3934/dcds.2011.30.641

[5]

Maciej J. Capiński. Covering relations and the existence of topologically normally hyperbolic invariant sets. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 705-725. doi: 10.3934/dcds.2009.23.705

[6]

Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089

[7]

Lin Wang. Variational destruction of invariant circles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4429-4443. doi: 10.3934/dcds.2012.32.4429

[8]

Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 64-74. doi: 10.3934/proc.2007.2007.64

[9]

Xuewei Ju, Desheng Li, Jinqiao Duan. Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1175-1197. doi: 10.3934/dcdsb.2019011

[10]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[11]

Karla Díaz-Ordaz. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 159-176. doi: 10.3934/dcds.2006.15.159

[12]

Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015

[13]

Hongyong Cui, Mirelson M. Freitas, José A. Langa. On random cocycle attractors with autonomous attraction universes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3379-3407. doi: 10.3934/dcdsb.2017142

[14]

Shoichi Hasegawa. A critical exponent of Joseph-Lundgren type for an Hénon equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1189-1198. doi: 10.3934/cpaa.2017058

[15]

Mark Pollicott. Local Hölder regularity of densities and Livsic theorems for non-uniformly hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1247-1256. doi: 10.3934/dcds.2005.13.1247

[16]

Inmaculada Baldomá, Ernest Fontich, Pau Martín. Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4159-4190. doi: 10.3934/dcds.2017177

[17]

Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233

[18]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

[19]

Shan Ma, Chengkui Zhong. The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 53-70. doi: 10.3934/dcds.2007.18.53

[20]

Yongluo Cao, Stefano Luzzatto, Isabel Rios. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 61-71. doi: 10.3934/dcds.2006.15.61

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]