2010, 4(3): 379-395. doi: 10.3934/ipi.2010.4.379

Simultaneous cartoon and texture inpainting

1. 

Temasek Laboratories and Department Mathematics, National University of Singapore, 2 Science Drive 2, 117543

2. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong, China

3. 

Department of Mathematics, National University of Singapore, 2 Science Drive 2, 117543, Singapore

Received  May 2009 Revised  January 2010 Published  July 2010

Real images usually have two layers, namely, cartoons (the piecewise smooth part of the image) and textures (the oscillating pattern part of the image). Both these two layers have sparse approximations under some tight frame systems such as framelet, translation invariant wavelet, curvelet, and local DCTs. In this paper, we solve image inpainting problems by using two separate tight frame systems which can sparsely represent cartoons and textures respectively. Different from existing schemes in the literature which are either analysis-based or synthesis-based sparsity priors, our minimization formulation balances these two priors. We also derive iterative algorithms to find their solutions and prove their convergence. Numerical simulation examples are given to demonstrate the applicability and usefulness of our proposed algorithms in image inpainting.
Citation: Jian-Feng Cai, Raymond H. Chan, Zuowei Shen. Simultaneous cartoon and texture inpainting. Inverse Problems & Imaging, 2010, 4 (3) : 379-395. doi: 10.3934/ipi.2010.4.379
[1]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[2]

C.M. Elliott, S. A. Smitheman. Analysis of the TV regularization and $H^{-1}$ fidelity model for decomposing animage into cartoon plus texture. Communications on Pure & Applied Analysis, 2007, 6 (4) : 917-936. doi: 10.3934/cpaa.2007.6.917

[3]

Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems & Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777

[4]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[5]

Laurence Cherfils, Hussein Fakih, Alain Miranville. Finite-dimensional attractors for the Bertozzi--Esedoglu--Gillette--Cahn--Hilliard equation in image inpainting. Inverse Problems & Imaging, 2015, 9 (1) : 105-125. doi: 10.3934/ipi.2015.9.105

[6]

Qiao-Fang Lian, Yun-Zhang Li. Reducing subspace frame multiresolution analysis and frame wavelets. Communications on Pure & Applied Analysis, 2007, 6 (3) : 741-756. doi: 10.3934/cpaa.2007.6.741

[7]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems & Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[8]

Hayden Schaeffer, John Garnett, Luminita A. Vese. A texture model based on a concentration of measure. Inverse Problems & Imaging, 2013, 7 (3) : 927-946. doi: 10.3934/ipi.2013.7.927

[9]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[10]

Frédéric Bourgeois, Kai Cieliebak, Tobias Ekholm. A note on Reeb dynamics on the tight 3-sphere. Journal of Modern Dynamics, 2007, 1 (4) : 597-613. doi: 10.3934/jmd.2007.1.597

[11]

Riccardo March, Giuseppe Riey. Analysis of a variational model for motion compensated inpainting. Inverse Problems & Imaging, 2017, 11 (6) : 997-1025. doi: 10.3934/ipi.2017046

[12]

Grégory Faye, Pascal Chossat. A spatialized model of visual texture perception using the structure tensor formalism. Networks & Heterogeneous Media, 2013, 8 (1) : 211-260. doi: 10.3934/nhm.2013.8.211

[13]

Hong Zhou, M. Gregory Forest, Qi Wang. Anchoring-induced texture & shear banding of nematic polymers in shear cells. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 707-733. doi: 10.3934/dcdsb.2007.8.707

[14]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[15]

Jianbin Yang, Cong Wang. A wavelet frame approach for removal of mixed gaussian and impulse noise on surfaces. Inverse Problems & Imaging, 2017, 11 (5) : 783-798. doi: 10.3934/ipi.2017037

[16]

Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems & Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761

[17]

Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389

[18]

Antoni Buades, Bartomeu Coll, Jose-Luis Lisani, Catalina Sbert. Conditional image diffusion. Inverse Problems & Imaging, 2007, 1 (4) : 593-608. doi: 10.3934/ipi.2007.1.593

[19]

Xiaojing Ye, Haomin Zhou. Fast total variation wavelet inpainting via approximated primal-dual hybrid gradient algorithm. Inverse Problems & Imaging, 2013, 7 (3) : 1031-1050. doi: 10.3934/ipi.2013.7.1031

[20]

Francisco J. Ibarrola, Ruben D. Spies. A two-step mixed inpainting method with curvature-based anisotropy and spatial adaptivity. Inverse Problems & Imaging, 2017, 11 (2) : 247-262. doi: 10.3934/ipi.2017012

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (37)

Other articles
by authors

[Back to Top]