2011, 29(1): 25-49. doi: 10.3934/dcds.2011.29.25

Existence of solutions for a Boussinesq system on the half line and on a finite interval

1. 

Laboratoire de Mathématiques, Université Paris-Sud, Bâtiment 425, CNRS UMR 8628, 91405 Orsay, France

Received  January 2009 Revised  February 2010 Published  September 2010

The initial boundary-value problem for a Boussinesq system is studied on the half line and on a finite interval. Global existence of weak solutions satisfying the boundary conditions is proven and uniqueness for solutions in a suitable class is studied. A proof of the persistence of finite regularity for solutions in the whole space is also presented.
Citation: Karine Adamy. Existence of solutions for a Boussinesq system on the half line and on a finite interval. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 25-49. doi: 10.3934/dcds.2011.29.25
References:
[1]

C. J. Amick, Regularity and uniqueness of solutions to the boussinesq system of equations,, J. Diff. Eq., 54 (1984), 231.

[2]

T. B. Benjamin, "Lectures on Nonlinear Wave Motion,", Lectures in Applied Mathematics, 15 (1974).

[3]

J. Bona and R. Smith, A model for the two-way propagation of water waves in a channel,, Math. Proc. Cambridge Philos., 79 (1976), 167. doi: doi:10.1017/S030500410005218X.

[4]

J. Bona and V. Dougalis, An initial and boundary-value problem for a model equation for propagation of long waves,, J. Math. Anal Appl., 75 (1980), 503. doi: doi:10.1016/0022-247X(80)90098-0.

[5]

J. Bona, M. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and linear theory,, J. Nonlinear Sci., 12 (2002), 283. doi: doi:10.1007/s00332-002-0466-4.

[6]

J. Bona, M. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media II: The nonlinear theory,, Nonlinearity, 17 (2004), 925. doi: doi:10.1088/0951-7715/17/3/010.

[7]

J. R. Cannon, "The One-dimensional Heat Equation,", Encyclopedia of Mathematics and its Applications, 23 (1984).

[8]

N. Dunford and J. Schwartz, "Linear Operators. Part I,", Pure and Applied Mathematics, VII (1988).

[9]

A. S. Fokas and B. Pelloni, Boundary value problems for Boussinesq type systems,, Math. Phys., 8 (2005), 59. doi: doi:10.1007/s11040-004-1650-6.

[10]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice Hall, (1964).

[11]

P. D. Lax, "Shock Waves and Entropy,", in Contributions to Non-Linear Functionnal Analysis, (1971).

[12]

M. M. Rao and Z. D. Ren, "Theory of Orlicz Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, (1991).

[13]

W. Rudin, "Functionnal Analysis,", McGraw-Hill, (1973).

[14]

M. E. Schonbek, Existence of solutions for the Boussinesq system of equations,, J. Differential Equations, 42 (1981), 325. doi: doi:10.1016/0022-0396(81)90108-X.

[15]

G. B. Whitham, "Linear and Nonlinear Waves,", Pure and Applied Mathematics, (1974).

show all references

References:
[1]

C. J. Amick, Regularity and uniqueness of solutions to the boussinesq system of equations,, J. Diff. Eq., 54 (1984), 231.

[2]

T. B. Benjamin, "Lectures on Nonlinear Wave Motion,", Lectures in Applied Mathematics, 15 (1974).

[3]

J. Bona and R. Smith, A model for the two-way propagation of water waves in a channel,, Math. Proc. Cambridge Philos., 79 (1976), 167. doi: doi:10.1017/S030500410005218X.

[4]

J. Bona and V. Dougalis, An initial and boundary-value problem for a model equation for propagation of long waves,, J. Math. Anal Appl., 75 (1980), 503. doi: doi:10.1016/0022-247X(80)90098-0.

[5]

J. Bona, M. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and linear theory,, J. Nonlinear Sci., 12 (2002), 283. doi: doi:10.1007/s00332-002-0466-4.

[6]

J. Bona, M. Chen and J. C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media II: The nonlinear theory,, Nonlinearity, 17 (2004), 925. doi: doi:10.1088/0951-7715/17/3/010.

[7]

J. R. Cannon, "The One-dimensional Heat Equation,", Encyclopedia of Mathematics and its Applications, 23 (1984).

[8]

N. Dunford and J. Schwartz, "Linear Operators. Part I,", Pure and Applied Mathematics, VII (1988).

[9]

A. S. Fokas and B. Pelloni, Boundary value problems for Boussinesq type systems,, Math. Phys., 8 (2005), 59. doi: doi:10.1007/s11040-004-1650-6.

[10]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice Hall, (1964).

[11]

P. D. Lax, "Shock Waves and Entropy,", in Contributions to Non-Linear Functionnal Analysis, (1971).

[12]

M. M. Rao and Z. D. Ren, "Theory of Orlicz Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, (1991).

[13]

W. Rudin, "Functionnal Analysis,", McGraw-Hill, (1973).

[14]

M. E. Schonbek, Existence of solutions for the Boussinesq system of equations,, J. Differential Equations, 42 (1981), 325. doi: doi:10.1016/0022-0396(81)90108-X.

[15]

G. B. Whitham, "Linear and Nonlinear Waves,", Pure and Applied Mathematics, (1974).

[1]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[2]

John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multi-point boundary value problems. Conference Publications, 2013, 2013 (special) : 273-281. doi: 10.3934/proc.2013.2013.273

[3]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[4]

Felix Sadyrbaev, Inara Yermachenko. Multiple solutions of nonlinear boundary value problems for two-dimensional differential systems. Conference Publications, 2009, 2009 (Special) : 659-668. doi: 10.3934/proc.2009.2009.659

[5]

Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403

[6]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[7]

Nassif Ghoussoub. Superposition of selfdual functionals in non-homogeneous boundary value problems and differential systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 187-220. doi: 10.3934/dcds.2008.21.187

[8]

G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377

[9]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[10]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[11]

Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627

[12]

G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205

[13]

V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191

[14]

Luigi C. Berselli, Carlo R. Grisanti. On the regularity up to the boundary for certain nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 53-71. doi: 10.3934/dcdss.2016.9.53

[15]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[16]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[17]

Wenying Feng. Solutions and positive solutions for some three-point boundary value problems. Conference Publications, 2003, 2003 (Special) : 263-272. doi: 10.3934/proc.2003.2003.263

[18]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[19]

Rinaldo M. Colombo, Francesca Monti. Solutions with large total variation to nonconservative hyperbolic systems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 47-60. doi: 10.3934/cpaa.2010.9.47

[20]

C.P. Walkden. Solutions to the twisted cocycle equation over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 935-946. doi: 10.3934/dcds.2000.6.935

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]