November  2010, 4(4): 703-712. doi: 10.3934/ipi.2010.4.703

Numerical recovering of a density by the BC-method

1. 

Ugra Research Institute of Information Technologies, Khanty-Mansiysk, 628011, Russian Federation, Russian Federation, Russian Federation

Received  March 2009 Revised  June 2010 Published  September 2010

In this paper we develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The results of numerical experiments are presented.
Citation: Leonid Pestov, Victoria Bolgova, Oksana Kazarina. Numerical recovering of a density by the BC-method. Inverse Problems & Imaging, 2010, 4 (4) : 703-712. doi: 10.3934/ipi.2010.4.703
References:
[1]

C. Bardos, G. Lebeau and J. Rauch., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary., SIAM J. Control Optim., 30 (1992), 1024. doi: doi:10.1137/0330055.

[2]

M. I. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC-method),, Inverse Problems, 13 (1997). doi: doi:10.1088/0266-5611/13/5/002.

[3]

M. I. Belishev, Recent progress in the boundary control method,, Inverse Problems, 23 (2007). doi: doi:10.1088/0266-5611/23/5/R01.

[4]

M. I. Belishev and V. Yu. Gotlib, Dynamical variant of the BC-method: theory and numerical testing,, J. Inverse Ill-Posed Problems, 7 (1999), 221. doi: doi:10.1515/jiip.1999.7.3.221.

[5]

A. P. Calderón, On an inverse boundary value problem,, In:, (1980), 65.

[6]

Y. Kurylev and M. Lassas, Inverse Problems and Index Formula for Dirac Operators,, Adv. Math., 221 (2009), 170. doi: doi:10.1016/j.aim.2008.12.001.

[7]

I. Lasiecka, J.-L. Lions, and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.

[8]

J.-L. Lions, "Contrôle Optimale de Systèmes Gouvernés par des Équations aux Dérivées partielles",, Dunod, (1968).

[9]

J.-L. Lions and E. Magenes, "Problèmes aux limites non homogènes et applications",, v. 1, (1968).

[10]

L. N. Pestov, On reconstruction of the speed of sound from a part of boundary,, J. Inverse Ill-Posed Problems, 7 (1999). doi: doi:10.1515/jiip.1999.7.5.481.

[11]

D.Tataru, Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem,, Comm. Partial Differential Equations, 20 (1995), 855. doi: doi:10.1080/03605309508821117.

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary., SIAM J. Control Optim., 30 (1992), 1024. doi: doi:10.1137/0330055.

[2]

M. I. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC-method),, Inverse Problems, 13 (1997). doi: doi:10.1088/0266-5611/13/5/002.

[3]

M. I. Belishev, Recent progress in the boundary control method,, Inverse Problems, 23 (2007). doi: doi:10.1088/0266-5611/23/5/R01.

[4]

M. I. Belishev and V. Yu. Gotlib, Dynamical variant of the BC-method: theory and numerical testing,, J. Inverse Ill-Posed Problems, 7 (1999), 221. doi: doi:10.1515/jiip.1999.7.3.221.

[5]

A. P. Calderón, On an inverse boundary value problem,, In:, (1980), 65.

[6]

Y. Kurylev and M. Lassas, Inverse Problems and Index Formula for Dirac Operators,, Adv. Math., 221 (2009), 170. doi: doi:10.1016/j.aim.2008.12.001.

[7]

I. Lasiecka, J.-L. Lions, and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.

[8]

J.-L. Lions, "Contrôle Optimale de Systèmes Gouvernés par des Équations aux Dérivées partielles",, Dunod, (1968).

[9]

J.-L. Lions and E. Magenes, "Problèmes aux limites non homogènes et applications",, v. 1, (1968).

[10]

L. N. Pestov, On reconstruction of the speed of sound from a part of boundary,, J. Inverse Ill-Posed Problems, 7 (1999). doi: doi:10.1515/jiip.1999.7.5.481.

[11]

D.Tataru, Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem,, Comm. Partial Differential Equations, 20 (1995), 855. doi: doi:10.1080/03605309508821117.

[1]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[2]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[3]

Jaemin Shin, Yongho Choi, Junseok Kim. An unconditionally stable numerical method for the viscous Cahn--Hilliard equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1737-1747. doi: 10.3934/dcdsb.2014.19.1737

[4]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[5]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[6]

Gianluca Mola. Recovering a large number of diffusion constants in a parabolic equation from energy measurements. Inverse Problems & Imaging, 2018, 12 (3) : 527-543. doi: 10.3934/ipi.2018023

[7]

Vladimir G. Romanov, Masahiro Yamamoto. Recovering two coefficients in an elliptic equation via phaseless information. Inverse Problems & Imaging, 2019, 13 (1) : 81-91. doi: 10.3934/ipi.2019005

[8]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems & Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

[9]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[10]

Shi Jin, Min Tang, Houde Han. A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks & Heterogeneous Media, 2009, 4 (1) : 35-65. doi: 10.3934/nhm.2009.4.35

[11]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[12]

José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic & Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025

[13]

Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391

[14]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

[15]

Eugenio Sinestrari. Wave equation with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 881-896. doi: 10.3934/dcds.1999.5.881

[16]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[17]

Carlos E. Kenig. The method of energy channels for nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019240

[18]

Ludwig Gauckler, Daniel Weiss. Metastable energy strata in numerical discretizations of weakly nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3721-3747. doi: 10.3934/dcds.2017158

[19]

Patrick Joly, Maryna Kachanovska, Adrien Semin. Wave propagation in fractal trees. Mathematical and numerical issues. Networks & Heterogeneous Media, 2019, 14 (2) : 205-264. doi: 10.3934/nhm.2019010

[20]

Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1173-1187. doi: 10.3934/mbe.2015.12.1173

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (6)

[Back to Top]