February  2011, 4(1): 1-13. doi: 10.3934/dcdss.2011.4.1

The periodic patch model for population dynamics with fractional diffusion

1. 

Ecole des Hautes Etudes en Sciences Sociales, CAMS, 54, bd Raspail F-75270 Paris, France

2. 

Institut de Mathématiques, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France

3. 

Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Via Trieste, 63 - 35121 Padova, Italy

Received  May 2010 Published  October 2010

Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion.
Citation: Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1
References:
[1]

J. Funct. Anal, 40 (1981), 1-29. doi: doi:10.1016/0022-1236(81)90069-0.  Google Scholar

[2]

Comm. Math. Phys., 253 (2005), 451-480. doi: doi:10.1007/s00220-004-1201-9.  Google Scholar

[3]

J. Math. Biol, 51 (2005), 75-113. doi: doi:10.1007/s00285-004-0313-3.  Google Scholar

[4]

J. Math. Pures Appl, 84 (2005), 1101-1146. doi: doi:10.1016/j.matpur.2004.10.006.  Google Scholar

[5]

Ann. Inst. Fourier, 18 (1968), 369-521.  Google Scholar

[6]

C. R. Math. Acad. Sci. Paris, 347 (2009), 1361-1366.  Google Scholar

[7]

Proc. Royal Soc. Edinburgh, 132 (2002), 567-594. doi: doi:10.1017/S0308210500001785.  Google Scholar

[8]

Annals of Math., 168 (2008), 643-674. doi: doi:10.4007/annals.2008.168.643.  Google Scholar

[9]

2003. Google Scholar

[10]

Springer-Verlag, 1979.  Google Scholar

[11]

Bjul. Moskowskogo Gos. Univ., 17 (1937), 1-26. Google Scholar

[12]

Biomathematics, 19, Springer-Verlag, Berlin, 1993.  Google Scholar

show all references

References:
[1]

J. Funct. Anal, 40 (1981), 1-29. doi: doi:10.1016/0022-1236(81)90069-0.  Google Scholar

[2]

Comm. Math. Phys., 253 (2005), 451-480. doi: doi:10.1007/s00220-004-1201-9.  Google Scholar

[3]

J. Math. Biol, 51 (2005), 75-113. doi: doi:10.1007/s00285-004-0313-3.  Google Scholar

[4]

J. Math. Pures Appl, 84 (2005), 1101-1146. doi: doi:10.1016/j.matpur.2004.10.006.  Google Scholar

[5]

Ann. Inst. Fourier, 18 (1968), 369-521.  Google Scholar

[6]

C. R. Math. Acad. Sci. Paris, 347 (2009), 1361-1366.  Google Scholar

[7]

Proc. Royal Soc. Edinburgh, 132 (2002), 567-594. doi: doi:10.1017/S0308210500001785.  Google Scholar

[8]

Annals of Math., 168 (2008), 643-674. doi: doi:10.4007/annals.2008.168.643.  Google Scholar

[9]

2003. Google Scholar

[10]

Springer-Verlag, 1979.  Google Scholar

[11]

Bjul. Moskowskogo Gos. Univ., 17 (1937), 1-26. Google Scholar

[12]

Biomathematics, 19, Springer-Verlag, Berlin, 1993.  Google Scholar

[1]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[2]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[5]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[6]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[7]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[8]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[9]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[10]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[11]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[12]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[13]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[14]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[15]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[16]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[17]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[18]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[19]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[20]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (19)

[Back to Top]