2011, 4(1): 1-13. doi: 10.3934/dcdss.2011.4.1

The periodic patch model for population dynamics with fractional diffusion

1. 

Ecole des Hautes Etudes en Sciences Sociales, CAMS, 54, bd Raspail F-75270 Paris, France

2. 

Institut de Mathématiques, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France

3. 

Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Via Trieste, 63 - 35121 Padova, Italy

Received  May 2010 Published  October 2010

Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion.
Citation: Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1
References:
[1]

H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,, J. Funct. Anal, 40 (1981), 1. doi: doi:10.1016/0022-1236(81)90069-0.

[2]

H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena,, Comm. Math. Phys., 253 (2005), 451. doi: doi:10.1007/s00220-004-1201-9.

[3]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol, 51 (2005), 75. doi: doi:10.1007/s00285-004-0313-3.

[4]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl, 84 (2005), 1101. doi: doi:10.1016/j.matpur.2004.10.006.

[5]

J.-M. Bony, P. Courrège and P. Priouret, Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum,, Ann. Inst. Fourier, 18 (1968), 369.

[6]

X. Cabré and J.-M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire,, C. R. Math. Acad. Sci. Paris, 347 (2009), 1361.

[7]

Y. Capdeboscq, Homogenization of a neutronic critical diffusion problem with drift,, Proc. Royal Soc. Edinburgh, 132 (2002), 567. doi: doi:10.1017/S0308210500001785.

[8]

P. Constantin, A. Kiselev, L. Ryzhik and A. Zlatos, Diffusion and mixing in fluid flow,, Annals of Math., 168 (2008), 643. doi: doi:10.4007/annals.2008.168.643.

[9]

J. Coville, PhD thesis,, PhD thesis, (2003).

[10]

P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Springer-Verlag, (1979).

[11]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Etude de l'équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique,, Bjul. Moskowskogo Gos. Univ., 17 (1937), 1.

[12]

J. D. Murray, "Mathematical Biology," 2nd edition,, Biomathematics, 19 (1993).

show all references

References:
[1]

H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,, J. Funct. Anal, 40 (1981), 1. doi: doi:10.1016/0022-1236(81)90069-0.

[2]

H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena,, Comm. Math. Phys., 253 (2005), 451. doi: doi:10.1007/s00220-004-1201-9.

[3]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol, 51 (2005), 75. doi: doi:10.1007/s00285-004-0313-3.

[4]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl, 84 (2005), 1101. doi: doi:10.1016/j.matpur.2004.10.006.

[5]

J.-M. Bony, P. Courrège and P. Priouret, Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum,, Ann. Inst. Fourier, 18 (1968), 369.

[6]

X. Cabré and J.-M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire,, C. R. Math. Acad. Sci. Paris, 347 (2009), 1361.

[7]

Y. Capdeboscq, Homogenization of a neutronic critical diffusion problem with drift,, Proc. Royal Soc. Edinburgh, 132 (2002), 567. doi: doi:10.1017/S0308210500001785.

[8]

P. Constantin, A. Kiselev, L. Ryzhik and A. Zlatos, Diffusion and mixing in fluid flow,, Annals of Math., 168 (2008), 643. doi: doi:10.4007/annals.2008.168.643.

[9]

J. Coville, PhD thesis,, PhD thesis, (2003).

[10]

P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Springer-Verlag, (1979).

[11]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Etude de l'équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique,, Bjul. Moskowskogo Gos. Univ., 17 (1937), 1.

[12]

J. D. Murray, "Mathematical Biology," 2nd edition,, Biomathematics, 19 (1993).

[1]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

[2]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[3]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[4]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[5]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[6]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[7]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[8]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[9]

Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407

[10]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[11]

Elena Beretta, Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-diffusion equation. Inverse Problems & Imaging, 2011, 5 (2) : 285-296. doi: 10.3934/ipi.2011.5.285

[12]

Takanori Ide, Kazuhiro Kurata, Kazunaga Tanaka. Multiple stable patterns for some reaction-diffusion equation in disrupted environments. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 93-116. doi: 10.3934/dcds.2006.14.93

[13]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[14]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[15]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[16]

Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399

[17]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[18]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[19]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[20]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (18)

[Back to Top]