2011, 29(2): 559-575. doi: 10.3934/dcds.2011.29.559

On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems

1. 

CMAT e Departamento de Matemática e Aplicações, Universidade do Minho, 4800-058 Guimarães, Portugal

2. 

ISR-Porto, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal, Portugal

Received  September 2009 Revised  April 2010 Published  October 2010

We address necessary conditions of optimality (NCO), in the form of a maximum principle, for optimal control problems with state constraints. In particular, we are interested in the NCO that are strengthened to avoid the degeneracy phenomenon that occurs when the trajectory hits the boundary of the state constraint. In the literature on this subject, we can distinguish two types of constraint qualifications (CQ) under which the strengthened NCO can be applied: CQ involving the optimal control and CQ not involving it. Each one of these types of CQ has its own merits. The CQs involving the optimal control are not so easy to verify, but, are typically applicable to problems with less regularity on the data. In this article, we provide conditions under which the type of CQ involving the optimal control can be reduced to the other type. In this way, we also provide nondegenerate NCO that are valid under a different set of hypotheses.
Citation: Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559
References:
[1]

A. V. Arutyunov and S. M. Aseev, State constraints in optimal control. The degeneracy phenomenon,, Systems Control Lett., 26 (1995), 267. doi: doi:10.1016/0167-6911(95)00021-Z.

[2]

A. V. Arutyunov and S. M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints,, SIAM J. Control Optim., 35 (1997), 930. doi: doi:10.1137/S036301299426996X.

[3]

J. Abadie, On the Kuhn-Tucker theorem,, in, (1967), 21.

[4]

A. V. Arutyunov, On necessary conditions for optimality in a problem with phase constraints,, Dokl. Akad. Nauk SSSR, 280 (1985), 1033.

[5]

Aram V. Arutyunov, "Optimality Conditions. Abnormal and Degenerate Problems,", Mathematics and its Applications, 526 (2000).

[6]

A. V. Arutyunov and N. T. Tynyanskiy, The maximum principle in a problem with phase constraints,, Izv. Akad. Nauk SSSR Tekhn. Kibernet, (1984), 60.

[7]

P. Bettiol and H. Frankowska, Normality of the maximum principle for nonconvex constrained Bolza problems,, J. Differential Equations, 243 (2007), 256. doi: doi:10.1016/j.jde.2007.05.005.

[8]

A. Cernea and H. Frankowska, A connection between the maximum principle and dynamic programming for constrained control problems,, SIAM J. Control Optim., 44 (2005), 673. doi: doi:10.1137/S0363012903430585.

[9]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).

[10]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory,", Graduate Texts in Mathematics, 178 (1998).

[11]

A. Ya. Dubovitskii and A. A. Milyutin, Extremum problems under constraints,, Dokl. Akad. Nauk SSSR, 149 (1963), 759.

[12]

M. d. R. de Pinho, R. B. Vinter and H. Zheng, A maximum principle for optimal control problems with mixed constraints,, IMA J. Math. Control Inform., 18 (2001), 189. doi: doi:10.1093/imamci/18.2.189.

[13]

M. M. A. Ferreira, F. A. C. C. Fontes and R. B. Vinter, Nondegenerate necessary conditions for nonconvex optimal control problems with state constraints,, J. Math. Anal. Appl., 233 (1999), 116. doi: doi:10.1006/jmaa.1999.6270.

[14]

F. A. C. C. Fontes, "Optimisation-based Control of Constrained Nonlinear Systems,", Ph.D. thesis, (1999).

[15]

F. A. C. C. Fontes, "Normality in the Necessary Conditions of Optimality for Control Problems with State Constraints,", Proceedings of the IASTED Conference on Control and Applications (Cancun, (2000).

[16]

F. A. C. C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers,, Systems Control Lett., 42 (2001), 127. doi: doi:10.1016/S0167-6911(00)00084-0.

[17]

F. A. C. C. Fontes, Nondegenerate necessary conditions of optimality for control problems with state constraints,, in, (2002), 45.

[18]

M. M. A. Ferreira and R. B. Vinter, When is the maximum principle for state constrained problems nondegenerate?,, J. Math. Anal. Appl., 187 (1994), 438. doi: doi:10.1006/jmaa.1994.1366.

[19]

F. John, "Extremum Problems as Inequalities as Subsidiary Conditions,", Studies and Essays: Courant Anniversary Volume (K. O. Friedrichs, (1948).

[20]

H. W. Kuhn and A. W. Tucker, Nonlinear programming,, in, (1951), 481.

[21]

K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems,, Optimization, 52 (2003), 75. doi: doi:10.1080/0233193021000058940.

[22]

O. L. Mangasarian, "Nonlinear Programming,", McGraw-Hill, (1969).

[23]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation. I,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330 (2006).

[24]

L. W. Neustadt, A general theory of extremals,, Journal of Computer and System Sciences, 3 (1969), 57.

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Wiley Interscience, (1962).

[26]

F. Rampazzo and R. B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control,, IMA J. Math. Control Inform., 16 (1999), 335. doi: doi:10.1093/imamci/16.4.335.

[27]

F. Rampazzo and R. Vinter, Degenerate optimal control problems with state constraints,, SIAM J. Control Optim., 39 (2000), 989. doi: doi:10.1137/S0363012998340223.

[28]

R. Vinter, "Optimal Control,", Systems & Control: Foundations & Applications, (2000).

[29]

R. B. Vinter and G. Pappas, A maximum principle for nonsmooth optimal-control problems with state constraints,, J. Math. Anal. Appl., 89 (1982), 212. doi: doi:10.1016/0022-247X(82)90099-3.

[30]

R. B. Vinter and H. Zheng, Necessary conditions for optimal control problems with state constraints,, Trans. Amer. Math. Soc., 350 (1998), 1181. doi: doi:10.1090/S0002-9947-98-02129-1.

[31]

J. Warga, "Optimal Control of Differential and Functional Equations,", Academic Press, (1972).

show all references

References:
[1]

A. V. Arutyunov and S. M. Aseev, State constraints in optimal control. The degeneracy phenomenon,, Systems Control Lett., 26 (1995), 267. doi: doi:10.1016/0167-6911(95)00021-Z.

[2]

A. V. Arutyunov and S. M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints,, SIAM J. Control Optim., 35 (1997), 930. doi: doi:10.1137/S036301299426996X.

[3]

J. Abadie, On the Kuhn-Tucker theorem,, in, (1967), 21.

[4]

A. V. Arutyunov, On necessary conditions for optimality in a problem with phase constraints,, Dokl. Akad. Nauk SSSR, 280 (1985), 1033.

[5]

Aram V. Arutyunov, "Optimality Conditions. Abnormal and Degenerate Problems,", Mathematics and its Applications, 526 (2000).

[6]

A. V. Arutyunov and N. T. Tynyanskiy, The maximum principle in a problem with phase constraints,, Izv. Akad. Nauk SSSR Tekhn. Kibernet, (1984), 60.

[7]

P. Bettiol and H. Frankowska, Normality of the maximum principle for nonconvex constrained Bolza problems,, J. Differential Equations, 243 (2007), 256. doi: doi:10.1016/j.jde.2007.05.005.

[8]

A. Cernea and H. Frankowska, A connection between the maximum principle and dynamic programming for constrained control problems,, SIAM J. Control Optim., 44 (2005), 673. doi: doi:10.1137/S0363012903430585.

[9]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).

[10]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, "Nonsmooth Analysis and Control Theory,", Graduate Texts in Mathematics, 178 (1998).

[11]

A. Ya. Dubovitskii and A. A. Milyutin, Extremum problems under constraints,, Dokl. Akad. Nauk SSSR, 149 (1963), 759.

[12]

M. d. R. de Pinho, R. B. Vinter and H. Zheng, A maximum principle for optimal control problems with mixed constraints,, IMA J. Math. Control Inform., 18 (2001), 189. doi: doi:10.1093/imamci/18.2.189.

[13]

M. M. A. Ferreira, F. A. C. C. Fontes and R. B. Vinter, Nondegenerate necessary conditions for nonconvex optimal control problems with state constraints,, J. Math. Anal. Appl., 233 (1999), 116. doi: doi:10.1006/jmaa.1999.6270.

[14]

F. A. C. C. Fontes, "Optimisation-based Control of Constrained Nonlinear Systems,", Ph.D. thesis, (1999).

[15]

F. A. C. C. Fontes, "Normality in the Necessary Conditions of Optimality for Control Problems with State Constraints,", Proceedings of the IASTED Conference on Control and Applications (Cancun, (2000).

[16]

F. A. C. C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers,, Systems Control Lett., 42 (2001), 127. doi: doi:10.1016/S0167-6911(00)00084-0.

[17]

F. A. C. C. Fontes, Nondegenerate necessary conditions of optimality for control problems with state constraints,, in, (2002), 45.

[18]

M. M. A. Ferreira and R. B. Vinter, When is the maximum principle for state constrained problems nondegenerate?,, J. Math. Anal. Appl., 187 (1994), 438. doi: doi:10.1006/jmaa.1994.1366.

[19]

F. John, "Extremum Problems as Inequalities as Subsidiary Conditions,", Studies and Essays: Courant Anniversary Volume (K. O. Friedrichs, (1948).

[20]

H. W. Kuhn and A. W. Tucker, Nonlinear programming,, in, (1951), 481.

[21]

K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control problems,, Optimization, 52 (2003), 75. doi: doi:10.1080/0233193021000058940.

[22]

O. L. Mangasarian, "Nonlinear Programming,", McGraw-Hill, (1969).

[23]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation. I,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330 (2006).

[24]

L. W. Neustadt, A general theory of extremals,, Journal of Computer and System Sciences, 3 (1969), 57.

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Wiley Interscience, (1962).

[26]

F. Rampazzo and R. B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control,, IMA J. Math. Control Inform., 16 (1999), 335. doi: doi:10.1093/imamci/16.4.335.

[27]

F. Rampazzo and R. Vinter, Degenerate optimal control problems with state constraints,, SIAM J. Control Optim., 39 (2000), 989. doi: doi:10.1137/S0363012998340223.

[28]

R. Vinter, "Optimal Control,", Systems & Control: Foundations & Applications, (2000).

[29]

R. B. Vinter and G. Pappas, A maximum principle for nonsmooth optimal-control problems with state constraints,, J. Math. Anal. Appl., 89 (1982), 212. doi: doi:10.1016/0022-247X(82)90099-3.

[30]

R. B. Vinter and H. Zheng, Necessary conditions for optimal control problems with state constraints,, Trans. Amer. Math. Soc., 350 (1998), 1181. doi: doi:10.1090/S0002-9947-98-02129-1.

[31]

J. Warga, "Optimal Control of Differential and Functional Equations,", Academic Press, (1972).

[1]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[2]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[3]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[4]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[5]

Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations & Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281

[6]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[7]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[8]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[9]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[10]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[11]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[12]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[13]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[14]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-18. doi: 10.3934/jimo.2017082

[15]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[16]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[17]

Alexander J. Zaslavski. Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 245-260. doi: 10.3934/naco.2011.1.245

[18]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

[19]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[20]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (7)

[Back to Top]