2011, 4(3): 523-538. doi: 10.3934/dcdss.2011.4.523

Complete abstract differential equations of elliptic type with general Robin boundary conditions, in UMD spaces

1. 

Département de Mathématiques et Informatique, ENSET d'Oran, B.P 1523 Oran El M'Naouer, Algeria

2. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

3. 

Laboratoire de Mathématiques, U.F.R Sciences, et Techniques, Université du Havre, B.P 540, 76058 Le Havre Cedex

4. 

Laboratoire de Mathématiques Pures et Appliquées, Université de Mostaganem, 27000, Algeria

Received  May 2009 Revised  January 2010 Published  November 2010

In this paper we prove some new results concerning a complete abstract second-order differential equation with general Robin boundary conditions. The study is developped in UMD spaces and uses the celebrated Dore-Venni Theorem. We prove existence, uniqueness and maximal regularity of the strict solution. This work completes previous one [3] by authors; see also [11].
Citation: Mustapha Cheggag, Angelo Favini, Rabah Labbas, Stéphane Maingot, Ahmed Medeghri. Complete abstract differential equations of elliptic type with general Robin boundary conditions, in UMD spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 523-538. doi: 10.3934/dcdss.2011.4.523
References:
[1]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them,, Pacific J. Math., 10 (1960), 419.

[2]

D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional,, Ann. Probab., 9 (1981), 997.

[3]

M. Cheggag, A. Favini, R. Labbas, S. Maingot and A. Medeghri, Sturm-Liouville problems for an abstract differential equation of elliptic type in UMD spaces,, Differential and Integral Equations, 21 (2008), 981.

[4]

G. Dore and A. Venni, On the closedness of the sum of two closed operators,, Mathematische Zeitschrift, 196 (1987), 270.

[5]

H. O. Fattorini, "The Cauchy Problem,", Encyclopedia of Mathematics and its Applications, 18 (1983).

[6]

A. Favini, R. Labbas, S. Maingot, H. Tanabe and A. Yagi, Complete abstract differential equations of elliptic type in UMD spaces,, Funkcialaj Ekvacioj, 49 (2006), 193.

[7]

A. Favini, R. Labbas, S. Maingot, H. Tanabe and A. Yagi, A simplified approach in the study of elliptic differential equations in UMD spaces and new applications,, Funkcial. Ekvac., 51 (2008), 165.

[8]

P. Grisvard, Spazi di tracce e applicazioni (Italian),, Rend. Mat. (6), 5 (1972), 657.

[9]

M. Haase, "The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, Vol. 169,", Birkhäuser Verlag, (2006).

[10]

S. G. Krein, "Linear Differential Equations in Banach Spaces,", Moscou, (1967).

[11]

R. Labbas and M. Mechdene, Problème à dérivée oblique pour une equation differentielle opérationnelle du second ordre,, Maghreb Math. Rev., 2 (1992), 177.

[12]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995).

[13]

R. E. Showalter, "Hilbert Space Methods for Partial Differential Equations,", Pitman, (1977).

[14]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North Holland, (1978).

show all references

References:
[1]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them,, Pacific J. Math., 10 (1960), 419.

[2]

D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional,, Ann. Probab., 9 (1981), 997.

[3]

M. Cheggag, A. Favini, R. Labbas, S. Maingot and A. Medeghri, Sturm-Liouville problems for an abstract differential equation of elliptic type in UMD spaces,, Differential and Integral Equations, 21 (2008), 981.

[4]

G. Dore and A. Venni, On the closedness of the sum of two closed operators,, Mathematische Zeitschrift, 196 (1987), 270.

[5]

H. O. Fattorini, "The Cauchy Problem,", Encyclopedia of Mathematics and its Applications, 18 (1983).

[6]

A. Favini, R. Labbas, S. Maingot, H. Tanabe and A. Yagi, Complete abstract differential equations of elliptic type in UMD spaces,, Funkcialaj Ekvacioj, 49 (2006), 193.

[7]

A. Favini, R. Labbas, S. Maingot, H. Tanabe and A. Yagi, A simplified approach in the study of elliptic differential equations in UMD spaces and new applications,, Funkcial. Ekvac., 51 (2008), 165.

[8]

P. Grisvard, Spazi di tracce e applicazioni (Italian),, Rend. Mat. (6), 5 (1972), 657.

[9]

M. Haase, "The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, Vol. 169,", Birkhäuser Verlag, (2006).

[10]

S. G. Krein, "Linear Differential Equations in Banach Spaces,", Moscou, (1967).

[11]

R. Labbas and M. Mechdene, Problème à dérivée oblique pour une equation differentielle opérationnelle du second ordre,, Maghreb Math. Rev., 2 (1992), 177.

[12]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995).

[13]

R. E. Showalter, "Hilbert Space Methods for Partial Differential Equations,", Pitman, (1977).

[14]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North Holland, (1978).

[1]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[2]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[3]

Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607

[4]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[5]

Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759-769. doi: 10.3934/proc.2013.2013.759

[6]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[7]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[8]

Gafurjan Ibragimov, Askar Rakhmanov, Idham Arif Alias, Mai Zurwatul Ahlam Mohd Jaffar. The soft landing problem for an infinite system of second order differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 89-94. doi: 10.3934/naco.2017005

[9]

Jan Andres, Luisa Malaguti, Martina Pavlačková. Hartman-type conditions for multivalued Dirichlet problem in abstract spaces. Conference Publications, 2015, 2015 (special) : 38-55. doi: 10.3934/proc.2015.0038

[10]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[11]

Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

[12]

Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061

[13]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[14]

Paola Buttazzoni, Alessandro Fonda. Periodic perturbations of scalar second order differential equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 451-455. doi: 10.3934/dcds.1997.3.451

[15]

Kunquan Lan. Eigenvalues of second order differential equations with singularities. Conference Publications, 2001, 2001 (Special) : 241-247. doi: 10.3934/proc.2001.2001.241

[16]

Nicola Abatangelo, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian: From hypersingular integrals to boundary value problems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 899-922. doi: 10.3934/cpaa.2018045

[17]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[18]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[19]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[20]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

[Back to Top]