-
Previous Article
On existence and nonexistence of the positive solutions of non-newtonian filtration equation
- CPAA Home
- This Issue
-
Next Article
An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue
Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents
1. | Departamento de Matematica, Universidade Federal de Minas Gerais, 31270-010 Belo Horizonte-MG, Brazil |
2. | Departamento Matemática, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil |
3. | Departamento de Matematica, Universidade Federal de Vicosa, 36371-000 Vicosa-MG |
References:
[1] |
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and aplications, J. Functional Analysis, 14 (1973), 349-381.
doi: doi:10.1016/0022-1236(73)90051-7. |
[2] |
H. Berestycki and P. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. |
[3] |
H. Berestycki and P. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.
doi: doi:10.1007/BF00250556. |
[4] |
V. Benci and D. Fortunato, The nonlinear Klein-Gordon equation coupled with the Maxwell equations, Nonlinear Anal., 47 (2001), 6065-6072.
doi: doi:10.1016/S0362-546X(01)00688-5. |
[5] |
V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.
doi: doi:10.1142/S0129055X02001168. |
[6] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: doi:10.1002/cpa.3160360405. |
[7] |
D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal., 58 (2004), 733-747.
doi: doi:10.1016/j.na.2003.05.001. |
[8] |
T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schröinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.
doi: doi:10.1017/S030821050000353X. |
[9] |
T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. |
[10] |
P. d'Avenia, L. Pisani and G. Siciliano, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems, Nonlinear Anal., 71 (2009), 1985-1995.
doi: doi:10.1016/j.na.2009.02.111. |
[11] |
P. d'Avenia, L. Pisani, and G. Siciliano, Klein-Gordon-Maxwell systems in a bounded domain, Discrete Contin. Dyn. Syst., 26 (2010), 135-149. |
[12] |
V. Georgiev and N. Visciglia, Solitary waves for Klein-Gordon-Maxwell system with external Coulomb potential, J. Math. Pures Appl., 84 (2005), 957-983.
doi: doi:10.1016/j.matpur.2004.09.016. |
[13] |
D. Mugnai, Coupled Klein-Gordon and Born-Infeld-type equations: looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1519-1527. |
[14] |
O. Miyagaki, On a class of semilinear elliptic problems in $R^N$ with critical growth, Nonlinear Anal., 29 (1997), 773-781.
doi: doi:10.1016/S0362-546X(96)00087-9. |
[15] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: doi:10.1007/BF02418013. |
[16] |
M. Willem, "Minimax Theorems," Birkh鋟ser Boston, Inc., Boston, MA, 1996. |
show all references
References:
[1] |
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and aplications, J. Functional Analysis, 14 (1973), 349-381.
doi: doi:10.1016/0022-1236(73)90051-7. |
[2] |
H. Berestycki and P. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. |
[3] |
H. Berestycki and P. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.
doi: doi:10.1007/BF00250556. |
[4] |
V. Benci and D. Fortunato, The nonlinear Klein-Gordon equation coupled with the Maxwell equations, Nonlinear Anal., 47 (2001), 6065-6072.
doi: doi:10.1016/S0362-546X(01)00688-5. |
[5] |
V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.
doi: doi:10.1142/S0129055X02001168. |
[6] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: doi:10.1002/cpa.3160360405. |
[7] |
D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal., 58 (2004), 733-747.
doi: doi:10.1016/j.na.2003.05.001. |
[8] |
T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schröinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.
doi: doi:10.1017/S030821050000353X. |
[9] |
T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. |
[10] |
P. d'Avenia, L. Pisani and G. Siciliano, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems, Nonlinear Anal., 71 (2009), 1985-1995.
doi: doi:10.1016/j.na.2009.02.111. |
[11] |
P. d'Avenia, L. Pisani, and G. Siciliano, Klein-Gordon-Maxwell systems in a bounded domain, Discrete Contin. Dyn. Syst., 26 (2010), 135-149. |
[12] |
V. Georgiev and N. Visciglia, Solitary waves for Klein-Gordon-Maxwell system with external Coulomb potential, J. Math. Pures Appl., 84 (2005), 957-983.
doi: doi:10.1016/j.matpur.2004.09.016. |
[13] |
D. Mugnai, Coupled Klein-Gordon and Born-Infeld-type equations: looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1519-1527. |
[14] |
O. Miyagaki, On a class of semilinear elliptic problems in $R^N$ with critical growth, Nonlinear Anal., 29 (1997), 773-781.
doi: doi:10.1016/S0362-546X(96)00087-9. |
[15] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: doi:10.1007/BF02418013. |
[16] |
M. Willem, "Minimax Theorems," Birkh鋟ser Boston, Inc., Boston, MA, 1996. |
[1] |
Pietro d’Avenia, Lorenzo Pisani, Gaetano Siciliano. Klein-Gordon-Maxwell systems in a bounded domain. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 135-149. doi: 10.3934/dcds.2010.26.135 |
[2] |
Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097 |
[3] |
Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271 |
[4] |
Sitong Chen, Xianhua Tang. Improved results for Klein-Gordon-Maxwell systems with general nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2333-2348. doi: 10.3934/dcds.2018096 |
[5] |
Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146 |
[6] |
Hartmut Pecher. Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D. Communications on Pure and Applied Analysis, 2021, 20 (9) : 2965-2989. doi: 10.3934/cpaa.2021091 |
[7] |
Marcelo M. Cavalcanti, Leonel G. Delatorre, Daiane C. Soares, Victor Hugo Gonzalez Martinez, Janaina P. Zanchetta. Uniform stabilization of the Klein-Gordon system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5131-5156. doi: 10.3934/cpaa.2020230 |
[8] |
Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076 |
[9] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
[10] |
Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034 |
[11] |
M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573 |
[12] |
Bryce Weaver. Growth rate of periodic orbits for geodesic flows over surfaces with radially symmetric focusing caps. Journal of Modern Dynamics, 2014, 8 (2) : 139-176. doi: 10.3934/jmd.2014.8.139 |
[13] |
Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221 |
[14] |
Marilena N. Poulou, Nikolaos M. Stavrakakis. Global attractor for a Klein-Gordon-Schrodinger type system. Conference Publications, 2007, 2007 (Special) : 844-854. doi: 10.3934/proc.2007.2007.844 |
[15] |
Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233 |
[16] |
Marilena N. Poulou, Nikolaos M. Stavrakakis. Finite dimensionality of a Klein-Gordon-Schrödinger type system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 149-161. doi: 10.3934/dcdss.2009.2.149 |
[17] |
Julián López-Gómez. Uniqueness of radially symmetric large solutions. Conference Publications, 2007, 2007 (Special) : 677-686. doi: 10.3934/proc.2007.2007.677 |
[18] |
Tamara Fastovska. Long-time behaviour of a radially symmetric fluid-shell interaction system. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1315-1348. doi: 10.3934/dcds.2018054 |
[19] |
Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427 |
[20] |
J. Ignacio Tello. Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (10) : 3003-3023. doi: 10.3934/dcdss.2022045 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]