October  2011, 4(5): 1247-1266. doi: 10.3934/dcdss.2011.4.1247

Breather-mediated energy transfer in proteins

1. 

Centre de Biophysique Moleculaire (CBM-CNRS), University of Orleans, Rue Charles Sadron, 45071 Orleans, France

2. 

Laboratoire Biotechnologie, Biocatalyse et Biorégulation, UMR 6204 du CNRS, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, 44322 Nantes Cedex 3, France

Received  September 2009 Revised  December 2009 Published  December 2010

In this paper we investigate how energy is redistributed across protein structures, following localized kicks, within the framework of a nonlinear network model. We show that energy is directed most of the times to a few specific sites, systematically within the stiffest regions. This effect is sharpened as the energy of the kicks is increased, with fractions of transferred energy as high as 70% already for kicks above $20$ kcal/mol. Remarkably, we show that such site-selective, high-yield transfers mark the spontaneous formation of spatially localized, time-periodic vibrations at the target sites, acting as efficient energy-collecting centers. A comparison of our simulations with a previously developed theory reveals that such energy-pinning modes are discrete breathers, able to carry energy across the structure in an quasi-coherent fashion by jumping from site to site.
Citation: Francesco Piazza, Yves-Henri Sanejouand. Breather-mediated energy transfer in proteins. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1247-1266. doi: 10.3934/dcdss.2011.4.1247
References:
[1]

vol. 45, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. Google Scholar

[2]

Journal of Physics A: Mathematical and General, 35 (2002), 8885-8902. doi: 10.1088/0305-4470/35/42/301.  Google Scholar

[3]

Physica D: Nonlinear Phenomena, 216 (2006), 1-30. doi: 10.1016/j.physd.2005.12.020.  Google Scholar

[4]

Fold. Des., 2 (1997), 173-181. doi: 10.1016/S1359-0278(97)00024-2.  Google Scholar

[5]

C&H/CRC Mathematical & Computational Biology Series, vol. 9, CRC press, Boca Raton, 2005. Google Scholar

[6]

Proc. Natl. Acad. Sci. USA, 80 (1983), 6571-6575. doi: 10.1073/pnas.80.21.6571.  Google Scholar

[7]

Physical Review B, 42 (1990), 4921-4927. doi: 10.1103/PhysRevB.42.4921.  Google Scholar

[8]

Nova Science Publishers, Inc., 2005. Google Scholar

[9]

Chaos, 15 (2005), 015110. doi: 10.1063/1.1854273.  Google Scholar

[10]

Advanced Series in Nonlinear Dynamics, vol. 22, World Scientific, Singapore, 2004. Google Scholar

[11]

Structure, 17 (2009), 1042-1050. doi: 10.1016/j.str.2009.06.008.  Google Scholar

[12]

Journal of Physics: Condensed Matter, 15 (2003), S1699-S1707. doi: 10.1088/0953-8984/15/18/304.  Google Scholar

[13]

Physical Review E, 71 (2005), 026606-9. doi: 10.1103/PhysRevE.71.026606.  Google Scholar

[14]

Science, 295 (2002), 1480-1481. doi: 10.1126/science.1069823.  Google Scholar

[15]

Physical Review E, 49 (1994), 5018-5024. doi: 10.1103/PhysRevE.49.5018.  Google Scholar

[16]

Physics Reports, 295 (1998), 181-264. doi: 10.1016/S0370-1573(97)00068-9.  Google Scholar

[17]

Physics Reports, 467 (2008), 1-116. doi: 10.1016/j.physrep.2008.05.002.  Google Scholar

[18]

Proteins, 23 (1995), 177-186. doi: 10.1002/prot.340230207.  Google Scholar

[19]

Nature, 450 (2007), 913-916. doi: 10.1038/nature06407.  Google Scholar

[20]

Proteins, 33 (1998), 417-429. doi: 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8.  Google Scholar

[21]

Phys. Rev. Lett., 99 (2007), 238104. doi: 10.1103/PhysRevLett.99.238104.  Google Scholar

[22]

Phys. Rev. Lett., 87 (2001), 165501. doi: 10.1103/PhysRevLett.87.165501.  Google Scholar

[23]

Journal of Physical Chemistry A, 106 (2002), 10870-10876. doi: 10.1021/jp0206119.  Google Scholar

[24]

Phys. Rev. Lett., 87 (2001), 188102. doi: 10.1103/PhysRevLett.87.188102.  Google Scholar

[25]

Int. J. Quant. Chem., 10 (1983), 181-199. Google Scholar

[26]

Proc. Natl. Acad. Sci. USA, 79 (1982), 1346-1350. doi: 10.1073/pnas.79.4.1346.  Google Scholar

[27]

Physical Review Letters, 85 (2000), 3970-3973. doi: 10.1103/PhysRevLett.85.3970.  Google Scholar

[28]

Nature, 296 (1982), 776-778. doi: 10.1038/296776a0.  Google Scholar

[29]

Springer, Berlin, 1995. Google Scholar

[30]

Physica D: Nonlinear Phenomena, 119 (1998), 184-199. doi: 10.1016/S0167-2789(98)00079-7.  Google Scholar

[31]

Phys. Biol, 5 (2008), 026001. doi: 10.1088/1478-3975/5/2/026001.  Google Scholar

[32]

Physical Biology, 6 (2009), 046014. doi: 10.1088/1478-3975/6/4/046014.  Google Scholar

[33]

Europhysics Letters, 47 (1999), 421-427. doi: 10.1209/epl/i1999-00405-1.  Google Scholar

[34]

The Journal of Physical Chemistry B, 110 (2006), 6987-6990. doi: 10.1021/jp0556862.  Google Scholar

[35]

Structure, 15 (2007), 565-575. doi: 10.1016/j.str.2007.03.013.  Google Scholar

[36]

EPL, 78 (2007), 26001. doi: 10.1209/0295-5075/78/26001.  Google Scholar

[37]

Proteins, 67 (2007), 350-359. doi: 10.1002/prot.21353.  Google Scholar

[38]

J. Chem. Phys., 113 (2000), 7702-7711. doi: 10.1063/1.1313554.  Google Scholar

[39]

Physical Review B, 46 (1992), 6161-6168. doi: 10.1103/PhysRevB.46.6161.  Google Scholar

[40]

Journal of Biological Physics, 35 (2009), 57-72. doi: 10.1007/s10867-009-9135-2.  Google Scholar

[41]

Physics Reports, 217 (1992), 1-67. doi: 10.1016/0370-1573(92)90093-F.  Google Scholar

[42]

University of Chicago Press, Chicago, 1965. Google Scholar

[43]

Protein Engineering Design and Selection, 14 (2001), 1-6. doi: 10.1093/protein/14.1.1.  Google Scholar

[44]

Physical Review Letters, 77 (1996), 1905-1908. doi: 10.1103/PhysRevLett.77.1905.  Google Scholar

[45]

Journal of Molecular Biology, 378 (2008), 1-11. doi: 10.1016/j.jmb.2008.02.034.  Google Scholar

[46]

Molecular Biosystems, 5 (2009), 207-216. doi: 10.1039/b819720b.  Google Scholar

[47]

HFSP Journal, 2 (2008), 61-64. doi: 10.2976/1.2894846.  Google Scholar

[48]

Journal of Physics: Condensed Matter, 14 (2002), R1035-R1062. doi: 10.1088/0953-8984/14/39/202.  Google Scholar

[49]

Physical Review Letters, 88 (2001), 018102. doi: 10.1103/PhysRevLett.88.018102.  Google Scholar

[50]

Physical Review Letters, 84 (2000), 5435-5438. doi: 10.1103/PhysRevLett.84.5435.  Google Scholar

[51]

Structure, 13 (2005), 893-904. doi: 10.1016/j.str.2005.03.015.  Google Scholar

[52]

Journal of Physical Chemistry B, 107 (2003), 1698-1707. doi: 10.1021/jp026462b.  Google Scholar

show all references

References:
[1]

vol. 45, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. Google Scholar

[2]

Journal of Physics A: Mathematical and General, 35 (2002), 8885-8902. doi: 10.1088/0305-4470/35/42/301.  Google Scholar

[3]

Physica D: Nonlinear Phenomena, 216 (2006), 1-30. doi: 10.1016/j.physd.2005.12.020.  Google Scholar

[4]

Fold. Des., 2 (1997), 173-181. doi: 10.1016/S1359-0278(97)00024-2.  Google Scholar

[5]

C&H/CRC Mathematical & Computational Biology Series, vol. 9, CRC press, Boca Raton, 2005. Google Scholar

[6]

Proc. Natl. Acad. Sci. USA, 80 (1983), 6571-6575. doi: 10.1073/pnas.80.21.6571.  Google Scholar

[7]

Physical Review B, 42 (1990), 4921-4927. doi: 10.1103/PhysRevB.42.4921.  Google Scholar

[8]

Nova Science Publishers, Inc., 2005. Google Scholar

[9]

Chaos, 15 (2005), 015110. doi: 10.1063/1.1854273.  Google Scholar

[10]

Advanced Series in Nonlinear Dynamics, vol. 22, World Scientific, Singapore, 2004. Google Scholar

[11]

Structure, 17 (2009), 1042-1050. doi: 10.1016/j.str.2009.06.008.  Google Scholar

[12]

Journal of Physics: Condensed Matter, 15 (2003), S1699-S1707. doi: 10.1088/0953-8984/15/18/304.  Google Scholar

[13]

Physical Review E, 71 (2005), 026606-9. doi: 10.1103/PhysRevE.71.026606.  Google Scholar

[14]

Science, 295 (2002), 1480-1481. doi: 10.1126/science.1069823.  Google Scholar

[15]

Physical Review E, 49 (1994), 5018-5024. doi: 10.1103/PhysRevE.49.5018.  Google Scholar

[16]

Physics Reports, 295 (1998), 181-264. doi: 10.1016/S0370-1573(97)00068-9.  Google Scholar

[17]

Physics Reports, 467 (2008), 1-116. doi: 10.1016/j.physrep.2008.05.002.  Google Scholar

[18]

Proteins, 23 (1995), 177-186. doi: 10.1002/prot.340230207.  Google Scholar

[19]

Nature, 450 (2007), 913-916. doi: 10.1038/nature06407.  Google Scholar

[20]

Proteins, 33 (1998), 417-429. doi: 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8.  Google Scholar

[21]

Phys. Rev. Lett., 99 (2007), 238104. doi: 10.1103/PhysRevLett.99.238104.  Google Scholar

[22]

Phys. Rev. Lett., 87 (2001), 165501. doi: 10.1103/PhysRevLett.87.165501.  Google Scholar

[23]

Journal of Physical Chemistry A, 106 (2002), 10870-10876. doi: 10.1021/jp0206119.  Google Scholar

[24]

Phys. Rev. Lett., 87 (2001), 188102. doi: 10.1103/PhysRevLett.87.188102.  Google Scholar

[25]

Int. J. Quant. Chem., 10 (1983), 181-199. Google Scholar

[26]

Proc. Natl. Acad. Sci. USA, 79 (1982), 1346-1350. doi: 10.1073/pnas.79.4.1346.  Google Scholar

[27]

Physical Review Letters, 85 (2000), 3970-3973. doi: 10.1103/PhysRevLett.85.3970.  Google Scholar

[28]

Nature, 296 (1982), 776-778. doi: 10.1038/296776a0.  Google Scholar

[29]

Springer, Berlin, 1995. Google Scholar

[30]

Physica D: Nonlinear Phenomena, 119 (1998), 184-199. doi: 10.1016/S0167-2789(98)00079-7.  Google Scholar

[31]

Phys. Biol, 5 (2008), 026001. doi: 10.1088/1478-3975/5/2/026001.  Google Scholar

[32]

Physical Biology, 6 (2009), 046014. doi: 10.1088/1478-3975/6/4/046014.  Google Scholar

[33]

Europhysics Letters, 47 (1999), 421-427. doi: 10.1209/epl/i1999-00405-1.  Google Scholar

[34]

The Journal of Physical Chemistry B, 110 (2006), 6987-6990. doi: 10.1021/jp0556862.  Google Scholar

[35]

Structure, 15 (2007), 565-575. doi: 10.1016/j.str.2007.03.013.  Google Scholar

[36]

EPL, 78 (2007), 26001. doi: 10.1209/0295-5075/78/26001.  Google Scholar

[37]

Proteins, 67 (2007), 350-359. doi: 10.1002/prot.21353.  Google Scholar

[38]

J. Chem. Phys., 113 (2000), 7702-7711. doi: 10.1063/1.1313554.  Google Scholar

[39]

Physical Review B, 46 (1992), 6161-6168. doi: 10.1103/PhysRevB.46.6161.  Google Scholar

[40]

Journal of Biological Physics, 35 (2009), 57-72. doi: 10.1007/s10867-009-9135-2.  Google Scholar

[41]

Physics Reports, 217 (1992), 1-67. doi: 10.1016/0370-1573(92)90093-F.  Google Scholar

[42]

University of Chicago Press, Chicago, 1965. Google Scholar

[43]

Protein Engineering Design and Selection, 14 (2001), 1-6. doi: 10.1093/protein/14.1.1.  Google Scholar

[44]

Physical Review Letters, 77 (1996), 1905-1908. doi: 10.1103/PhysRevLett.77.1905.  Google Scholar

[45]

Journal of Molecular Biology, 378 (2008), 1-11. doi: 10.1016/j.jmb.2008.02.034.  Google Scholar

[46]

Molecular Biosystems, 5 (2009), 207-216. doi: 10.1039/b819720b.  Google Scholar

[47]

HFSP Journal, 2 (2008), 61-64. doi: 10.2976/1.2894846.  Google Scholar

[48]

Journal of Physics: Condensed Matter, 14 (2002), R1035-R1062. doi: 10.1088/0953-8984/14/39/202.  Google Scholar

[49]

Physical Review Letters, 88 (2001), 018102. doi: 10.1103/PhysRevLett.88.018102.  Google Scholar

[50]

Physical Review Letters, 84 (2000), 5435-5438. doi: 10.1103/PhysRevLett.84.5435.  Google Scholar

[51]

Structure, 13 (2005), 893-904. doi: 10.1016/j.str.2005.03.015.  Google Scholar

[52]

Journal of Physical Chemistry B, 107 (2003), 1698-1707. doi: 10.1021/jp026462b.  Google Scholar

[1]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[2]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[3]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[4]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[5]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[6]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[7]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[8]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[10]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[11]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[12]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[13]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[14]

Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048

[15]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2653-2676. doi: 10.3934/dcds.2020379

[16]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[17]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[18]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[19]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

[20]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]