2011, 8(1): 183-197. doi: 10.3934/mbe.2011.8.183

A note on the use of optimal control on a discrete time model of influenza dynamics

1. 

Program in Computational Science, The University of Texas at El Paso, El Paso, TX 79968-0514, United States

2. 

Mathematical, Computational and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287

3. 

Program in Computational Science, Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968-0514, United States

4. 

Mathematics, Computational and Modeling Sciences Center, Arizona State University, PO Box 871904, Tempe, AZ 85287

Received  June 2010 Revised  September 2010 Published  January 2011

A discrete time Susceptible - Asymptomatic - Infectious - Treated - Recovered (SAITR) model is introduced in the context of influenza transmission. We evaluate the potential effect of control measures such as social distancing and antiviral treatment on the dynamics of a single outbreak. Optimal control theory is applied to identify the best way of reducing morbidity and mortality at a minimal cost. The problem is solved by using a discrete version of Pontryagin's maximum principle. Numerical results show that dual strategies have stronger impact in the reduction of the final epidemic size.
Citation: Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183
References:
[1]

L. J. Allen and A. M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Math. Biosci., 163 (2000), 1. doi: 10.1016/S0025-5564(99)00047-4.

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1992).

[3]

J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, A model for influenza with vaccination and antiviral treatment,, J. Theor. Biol., 253 (2003), 118. doi: 10.1016/j.jtbi.2008.02.026.

[4]

H. Behncke, Optimal control of deterministic epidemics,, Opt. Control Appl. Meth., 21 (2000), 269. doi: 10.1002/oca.678.

[5]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer-Verlag, (2001).

[6]

F. Brauer, Z. Feng, and C. Castillo-Chavez, Discrete epidemic models,, Math. Biosc. $&$ Eng., 7 (2010), 1.

[7]

P. Brewer, Economic effects of pandemic flu in a recession, 2009,, http://www.wisebread.com/economic-effects-of-pandemic-flu-in-a-recession., ().

[8]

C. A. Burdet and S. P. Sethi, On the maximum principle for a class of discrete dynamical systems with Lags,, Journal of Optimization Theory and Applications, 19 (1976), 445. doi: 10.1007/BF00941486.

[9]

C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with complex dynamics,, Nonlinear Analysis, 47 (2001), 4753. doi: 10.1016/S0362-546X(01)00587-9.

[10]

C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with simple and complex population dynamics,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases (eds., 125 (2001), 153.

[11]

M. Chan, World now at the start of 2009 influenza pandemic, 11 Jun. 2009., http://who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html, ().

[12]

G. Chowell, C. E. Ammon, N. W. Hengartner and J. M. Hyman, Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions,, J. Theor. Biol., 241 (2006), 193. doi: 10.1016/j.jtbi.2005.11.026.

[13]

G. Chowell, H. Nishiura and L. M. A. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data,, J. Roy. Soc. Interface, 4 (2007), 55. doi: 10.1098/rsif.2006.0161.

[14]

W. Ding, L. Gross, K. Langston, S. Lenhart and L. Real, Rabies in racoons: Optimal control for a discrete time model on a spatial grid,, J. Biol. Dynamics, 1 (2007), 307. doi: 10.1080/17513750701605515.

[15]

R. Durrett and S. A. Levin, The importance of being discrete (and spatial),, Theoret. Popul. Biol., 46 (1994). doi: 10.1006/tpbi.1994.1032.

[16]

N. M. Ferguson, D. A. T. Cumminangs, C. Fraser, J. C. Cajika, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic,, Nature, 442 (2006), 448. doi: 10.1038/nature04795.

[17]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev, 42 (2000), 599. doi: 10.1137/S0036144500371907.

[18]

R. Hilschera and V. Zeidanb, Discrete optimal control: The accessory problem and necessary optimality conditions,, Journal of Mathematical Analysis and Applications, 243 (2000), 429. doi: 10.1006/jmaa.1999.6679.

[19]

C. Hwang and L. Fan, A Discrete version of Pontryagin's maximum principle,, Operations Research, 15 (1967), 139. doi: 10.1287/opre.15.1.139.

[20]

E. Jung, S. Lenhart, V. Protopopescu and C. F. Babbs, Optimal control theory applied to a difference equation model for cardiopulmonary resuscitation,, Mathematical Models and methods in Applied Sciences, 15 (2005), 1519. doi: 10.1142/S0218202505000856.

[21]

M. I. Kamien and N. L. Schwarz, "Dynamic Optimization. The Calculus of Variations and Optimal Control in Economics And Management,", Amsterdam: North-Holland, (1991).

[22]

S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviral treatment and isolation,, J. Theor. Biol., 265 (2010), 136. doi: 10.1016/j.jtbi.2010.04.003.

[23]

S. Lenhart and J. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall, (2007).

[24]

B. Marinkovic, Optimality conditions for discrete optimal control problems,, Optimization Methods & Software Archive, 22 (2007), 959.

[25]

C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza,, Nature, 432 (2004), 904. doi: 10.1038/nature03063.

[26]

J. C. Monterrubio, Short-term economic impacts of influenza A(H1N1) and government reaction on the Mexican tourism industry: an analysis of the media,, International Journal of Tourism Policy, 3 (2010), 1. doi: 10.1504/IJTP.2010.031599.

[27]

J. Nocedal, "Numerical Optimization,", Springer, (2006).

[28]

M. Nuno, G. Chowell, X. Wang and C. Castillo-Chavez, On the role of cross-immunity and vaccines on the survival of less fit flu-strains,, Theor. Pop. Biol., 71 (2007), 20.

[29]

L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mishchenko, "The Mathematical Theory of Optimal Processes,", Wiley, (1962).

[30]

Z. Qiu and Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment,, Bull. Math. Biol., 72 (2009), 1. doi: 10.1007/s11538-009-9435-5.

[31]

S. P. Sethi and G. L. Thompson, "Optimal Control Theory: Applications to Management Science and Economics,", Second Edition, (2000).

[32]

J. M. Tchuenche, S. A. Kamis, F. B. Agusto and S. C. Mpesche, "Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination,", Acta Biotheoretica, (2010).

[33]

S. M. Tracht, S. Del Valle and J. Hyman, Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1), PLoS ONE, 5 (2010). doi: 10.1371/journal.pone.0009018.

[34]

Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission and control in China,, Math. and Computer Modelling, 40 (2004), 1491. doi: 10.1016/j.mcm.2005.01.007.

show all references

References:
[1]

L. J. Allen and A. M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Math. Biosci., 163 (2000), 1. doi: 10.1016/S0025-5564(99)00047-4.

[2]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1992).

[3]

J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, A model for influenza with vaccination and antiviral treatment,, J. Theor. Biol., 253 (2003), 118. doi: 10.1016/j.jtbi.2008.02.026.

[4]

H. Behncke, Optimal control of deterministic epidemics,, Opt. Control Appl. Meth., 21 (2000), 269. doi: 10.1002/oca.678.

[5]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer-Verlag, (2001).

[6]

F. Brauer, Z. Feng, and C. Castillo-Chavez, Discrete epidemic models,, Math. Biosc. $&$ Eng., 7 (2010), 1.

[7]

P. Brewer, Economic effects of pandemic flu in a recession, 2009,, http://www.wisebread.com/economic-effects-of-pandemic-flu-in-a-recession., ().

[8]

C. A. Burdet and S. P. Sethi, On the maximum principle for a class of discrete dynamical systems with Lags,, Journal of Optimization Theory and Applications, 19 (1976), 445. doi: 10.1007/BF00941486.

[9]

C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with complex dynamics,, Nonlinear Analysis, 47 (2001), 4753. doi: 10.1016/S0362-546X(01)00587-9.

[10]

C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with simple and complex population dynamics,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases (eds., 125 (2001), 153.

[11]

M. Chan, World now at the start of 2009 influenza pandemic, 11 Jun. 2009., http://who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html, ().

[12]

G. Chowell, C. E. Ammon, N. W. Hengartner and J. M. Hyman, Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions,, J. Theor. Biol., 241 (2006), 193. doi: 10.1016/j.jtbi.2005.11.026.

[13]

G. Chowell, H. Nishiura and L. M. A. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data,, J. Roy. Soc. Interface, 4 (2007), 55. doi: 10.1098/rsif.2006.0161.

[14]

W. Ding, L. Gross, K. Langston, S. Lenhart and L. Real, Rabies in racoons: Optimal control for a discrete time model on a spatial grid,, J. Biol. Dynamics, 1 (2007), 307. doi: 10.1080/17513750701605515.

[15]

R. Durrett and S. A. Levin, The importance of being discrete (and spatial),, Theoret. Popul. Biol., 46 (1994). doi: 10.1006/tpbi.1994.1032.

[16]

N. M. Ferguson, D. A. T. Cumminangs, C. Fraser, J. C. Cajika, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic,, Nature, 442 (2006), 448. doi: 10.1038/nature04795.

[17]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev, 42 (2000), 599. doi: 10.1137/S0036144500371907.

[18]

R. Hilschera and V. Zeidanb, Discrete optimal control: The accessory problem and necessary optimality conditions,, Journal of Mathematical Analysis and Applications, 243 (2000), 429. doi: 10.1006/jmaa.1999.6679.

[19]

C. Hwang and L. Fan, A Discrete version of Pontryagin's maximum principle,, Operations Research, 15 (1967), 139. doi: 10.1287/opre.15.1.139.

[20]

E. Jung, S. Lenhart, V. Protopopescu and C. F. Babbs, Optimal control theory applied to a difference equation model for cardiopulmonary resuscitation,, Mathematical Models and methods in Applied Sciences, 15 (2005), 1519. doi: 10.1142/S0218202505000856.

[21]

M. I. Kamien and N. L. Schwarz, "Dynamic Optimization. The Calculus of Variations and Optimal Control in Economics And Management,", Amsterdam: North-Holland, (1991).

[22]

S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviral treatment and isolation,, J. Theor. Biol., 265 (2010), 136. doi: 10.1016/j.jtbi.2010.04.003.

[23]

S. Lenhart and J. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall, (2007).

[24]

B. Marinkovic, Optimality conditions for discrete optimal control problems,, Optimization Methods & Software Archive, 22 (2007), 959.

[25]

C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza,, Nature, 432 (2004), 904. doi: 10.1038/nature03063.

[26]

J. C. Monterrubio, Short-term economic impacts of influenza A(H1N1) and government reaction on the Mexican tourism industry: an analysis of the media,, International Journal of Tourism Policy, 3 (2010), 1. doi: 10.1504/IJTP.2010.031599.

[27]

J. Nocedal, "Numerical Optimization,", Springer, (2006).

[28]

M. Nuno, G. Chowell, X. Wang and C. Castillo-Chavez, On the role of cross-immunity and vaccines on the survival of less fit flu-strains,, Theor. Pop. Biol., 71 (2007), 20.

[29]

L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mishchenko, "The Mathematical Theory of Optimal Processes,", Wiley, (1962).

[30]

Z. Qiu and Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment,, Bull. Math. Biol., 72 (2009), 1. doi: 10.1007/s11538-009-9435-5.

[31]

S. P. Sethi and G. L. Thompson, "Optimal Control Theory: Applications to Management Science and Economics,", Second Edition, (2000).

[32]

J. M. Tchuenche, S. A. Kamis, F. B. Agusto and S. C. Mpesche, "Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination,", Acta Biotheoretica, (2010).

[33]

S. M. Tracht, S. Del Valle and J. Hyman, Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1), PLoS ONE, 5 (2010). doi: 10.1371/journal.pone.0009018.

[34]

Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission and control in China,, Math. and Computer Modelling, 40 (2004), 1491. doi: 10.1016/j.mcm.2005.01.007.

[1]

Eunha Shim. Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1615-1634. doi: 10.3934/mbe.2013.10.1615

[2]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[3]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[4]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[5]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[6]

Cristiana J. Silva, Delfim F. M. Torres. Optimal control strategies for tuberculosis treatment: A case study in Angola. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 601-617. doi: 10.3934/naco.2012.2.601

[7]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[8]

Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences & Engineering, 2012, 9 (2) : 369-392. doi: 10.3934/mbe.2012.9.369

[9]

Holly Gaff, Elsa Schaefer. Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences & Engineering, 2009, 6 (3) : 469-492. doi: 10.3934/mbe.2009.6.469

[10]

Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587

[11]

Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639

[12]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[13]

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067

[14]

Xun-Yang Wang, Khalid Hattaf, Hai-Feng Huo, Hong Xiang. Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1267-1285. doi: 10.3934/jimo.2016.12.1267

[15]

Marco Arieli Herrera-Valdez, Maytee Cruz-Aponte, Carlos Castillo-Chavez. Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009. Mathematical Biosciences & Engineering, 2011, 8 (1) : 21-48. doi: 10.3934/mbe.2011.8.21

[16]

Pierre Degond, Gadi Fibich, Benedetto Piccoli, Eitan Tadmor. Special issue on modeling and control in social dynamics. Networks & Heterogeneous Media, 2015, 10 (3) : i-ii. doi: 10.3934/nhm.2015.10.3i

[17]

Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151-165. doi: 10.3934/mbe.2013.10.151

[18]

Mudassar Imran, Hal L. Smith. A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences & Engineering, 2014, 11 (3) : 547-571. doi: 10.3934/mbe.2014.11.547

[19]

Francesco Salvarani, Gabriel Turinici. Optimal individual strategies for influenza vaccines with imperfect efficacy and durability of protection. Mathematical Biosciences & Engineering, 2018, 15 (3) : 629-652. doi: 10.3934/mbe.2018028

[20]

Urszula Ledzewicz, Heinz Schättler. On optimal singular controls for a general SIR-model with vaccination and treatment. Conference Publications, 2011, 2011 (Special) : 981-990. doi: 10.3934/proc.2011.2011.981

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

[Back to Top]