2011, 30(2): 427-454. doi: 10.3934/dcds.2011.30.427

An entropy based theory of the grain boundary character distribution

1. 

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States

2. 

Fraunhofer Austria Research GmbH, Visual Computing, A-8010 Graz, Austria

3. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, United States

4. 

Department of Mathematics, The University of Utah, Salt Lake City, UT 84112, United States

5. 

Center for Nonlinear Analysis and Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890

6. 

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States, United States

Received  October 2010 Revised  November 2010 Published  February 2011

Cellular networks are ubiquitous in nature. They exhibit behavior on many different length and time scales and are generally metastable. Most technologically useful materials are polycrystalline microstructures composed of a myriad of small monocrystalline grains separated by grain boundaries. The energetics and connectivity of the grain boundary network plays a crucial role in determining the properties of a material across a wide range of scales. A central problem in materials science is to develop technologies capable of producing an arrangement of grains—a texture—appropriate for a desired set of material properties. Here we discuss the role of energy in texture development, measured by a character distribution. We derive an entropy based theory based on mass transport and a Kantorovich-Rubinstein-Wasserstein metric to suggest that, to first approximation, this distribution behaves like the solution to a Fokker-Planck Equation.
Citation: Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427
References:
[1]

B. L. Adams, D. Kinderlehrer, I. Livshits, D. Mason, W. W. Mullins, G. S. Rohrer, A. D. Rollett, D. Saylor, S Ta'asan and C. Wu, Extracting grain boundary energy from triple junction measurement,, Interface Science, 7 (1999), 321. doi: 10.1023/A:1008733728830.

[2]

B. L. Adams, D. Kinderlehrer, W. W. Mullins, A. D. Rollett and S. Ta'asan, Extracting the relative grain boundary free energy and mobility functions from the geometry of microstructures,, Scripta Materiala, 38 (1998), 531. doi: 10.1016/S1359-6462(97)00530-7.

[3]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,'', Lectures in Mathematics ETH Z\, (2008).

[4]

T. Arbogast, Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Locally conservative numerical methods for flow in porous media,, Comput. Geosci, 6 (2002), 453. doi: 10.1023/A:1021295215383.

[5]

T. Arbogast and H. L. Lehr, Homogenization of a Darcy-Stokes system modeling vuggy porous media,, Comput. Geosci, 10 (2006), 291. doi: 10.1007/s10596-006-9024-8.

[6]

M. Balhoff, A. Mikelić and Mary F. Wheeler, Polynomial filtration laws for low Reynolds number flows through porous media,, Transp. Porous Media, 81 (2010), 35. doi: 10.1007/s11242-009-9388-z.

[7]

M. T. Balhoff, S. G. Thomas and M. F. Wheeler, Mortar coupling and upscaling of pore-scale models,, Comput. Geosci, 12 (2008), 15. doi: 10.1007/s10596-007-9058-6.

[8]

K. Barmak, unpublished., unpublished., (none).

[9]

K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp and S. Ta'asan, Predictive theory for the grain boundary character distribution,, in, (2010).

[10]

K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp and S. Ta'asan, "Critical Events, Entropy, and the Grain Boundary Character Distribution,'', Center for Nonlinear Analysis 10-CNA-014, (2010).

[11]

K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer and S. Ta'asan, Geometric growth and character development in large metastable systems,, Rendiconti di Matematica, 29 (2009), 65.

[12]

K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer and S. Ta'asan, On a statistical theory of critical events in microstructural evolution,, in, (2007), 185.

[13]

K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer and S. Ta'asan, Towards a statistical theory of texture evolution in polycrystals,, SIAM Journal Sci. Comp, 30 (2007), 3150. doi: 10.1137/070692352.

[14]

K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer and S. Ta'asan, A new perspective on texture evolution,, International Journal on Numerical Analysis and Modeling, 5 (2008), 93.

[15]

K. Barmak, D. Kinderlehrer, I. Livshits and S. Ta'asan, Remarks on a multiscale approach to grain growth in polycrystals,, In, 68 (2006), 1.

[16]

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,, Numer. Math, 84 (2000), 375. doi: 10.1007/s002110050002.

[17]

G. Bertotti, "Hysteresis in Magnetism,'', Academic Press, (1998).

[18]

E. Bouchbinder and J. S. Langer, Nonequilibrium thermodynamics of driven amorphous materials. i. Internal degrees of freedom and volume deformation,, Physical Review E, 80 (2009).

[19]

E. Bouchbinder and J. S. Langer, Nonequilibrium thermodynamics of driven amorphous materials. ii. effective-temperature theory,, Physical Review E, 80 (2009).

[20]

E. Bouchbinder and J. S. Langer, Nonequilibrium thermodynamics of driven amorphous materials. iii. shear-transformation-zone plasticity,, Physical Review E, 80 (2009).

[21]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation,, Arch. Rational Mech. Anal., 124 (1993), 355.

[22]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,'', Studies in Mathematics and its Applications, 4 (1978). doi: 10.1016/S0168-2024(08)70178-4.

[23]

A. Cohen, A stochastic approach to coarsening of cellular networks,, Multiscale Model. Simul, 8 (2009), 463.

[24]

A. DeSimone, R. V. Kohn, S. Müller, F. Otto and R. Schäfer, Two-dimensional modelling of soft ferromagnetic films,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci, 457 (2001), 2983.

[25]

Y. Epshteyn and B. Rivière, On the solution of incompressible two-phase flow by a p-version discontinuous Galerkin method,, Comm. Numer. Methods Engrg, 22 (2006), 741. doi: 10.1002/cnm.846.

[26]

Y. Epshteyn and B. Rivière, Fully implicit discontinuous finite element methods for two-phase flow,, Applied Numerical Mathematics, 57 (2007), 383. doi: 10.1016/j.apnum.2006.04.004.

[27]

M. Frechet, Sur la distance de deux lois de probabilite,, Comptes Rendus de l' Academie des Sciences Serie I-Mathematique, 244 (1957), 689.

[28]

C. Gardiner, "Stochastic Methods, 4th Edition,'', Springer-Verlag, (2009).

[29]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,, Mat. Sb. (N.S.), 47 (1959), 271.

[30]

S. K. Godunov and V. S. Ryaben'kii, "Difference Schemes. An Introduction to the Underlying Theory,'', volume \textbf{19} of Studies in Mathematics and its Applications, 19 (1987).

[31]

J. Gruber, H. M. Miller, T. D. Hoffmann, G. S. Rohrer and A. D. Rollett, Misorientation texture development during grain growth. part i: Simulation and experiment,, Acta Materialia, 57 (2009), 6102. doi: 10.1016/j.actamat.2009.08.036.

[32]

J. Gruber, A. D. Rollett and G. S. Rohrer, Misorientation texture development during grain growth. part ii: Theory,, Acta Materialia, 58 (2010), 14. doi: 10.1016/j.actamat.2009.08.032.

[33]

M. Gurtin, "Thermomechanics of Evolving Phase Boundaries in the Plane,'', Oxford, (1993).

[34]

R. Helmig, "Multiphase Flow and Transport Processes in the Subsurface,'', Springer, (1997).

[35]

C. Herring, Surface tension as a motivation for sintering,, in, (1951), 143.

[36]

C. Herring, The use of classical macroscopic concepts in surface energy problems,, In, (1952), 5.

[37]

E. A. Holm, G. N. Hassold and M. A. Miodownik, On misorientation distribution evolution during anisotropic grain growth,, Acta Materialia, 49 (2001), 2981. doi: 10.1016/S1359-6454(01)00207-5.

[38]

A. Iserles, "A First Course in the Numerical Analysis of Differential Equations,'', Cambridge Texts in Applied Mathematics. Cambridge University Press, (1996).

[39]

R. Jordan, D. Kinderlehrer and F. Otto, Free energy and the fokker-planck equation,, Physica D, 107 (1997), 265. doi: 10.1016/S0167-2789(97)00093-6.

[40]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the fokker-planck equation,, SIAM J. Math. Analysis, 29 (1998), 1. doi: 10.1137/S0036141096303359.

[41]

D. Kinderlehrer, J. Lee, I. Livshits, A. Rollett and S. Ta'asan, Mesoscale simulation of grain growth,, Recrystalliztion and Grain Growth, 467-470 (2004), 467.

[42]

D. Kinderlehrer and C. Liu, Evolution of grain boundaries,, Mathematical Models and Methods in Applied Sciences, 11 (2001), 713. doi: 10.1142/S0218202501001069.

[43]

D. Kinderlehrer, I. Livshits, G. S. Rohrer, S. Ta'asan and P. Yu, Mesoscale simulation of the evolution of the grain boundary character distribution,, Recrystallization and grain growth, 467-470 (2004), 467.

[44]

D. Kinderlehrer, I. Livshits and S. Ta'asan, A variational approach to modeling and simulation of grain growth,, SIAM J. Sci. Comp, 28 (2006), 1694. doi: 10.1137/030601971.

[45]

R. V. Kohn and F. Otto, Upper bounds on coarsening rates,, Comm. Math. Phys, 229 (2002), 375. doi: 10.1007/s00220-002-0693-4.

[46]

L. D. Landau and E. M. Lifshitz, "Fluid Mechanics,'', Translated from the Russian by J. B. Sykes and W. H. Reid. Course of Theoretical Physics, 6 (1959).

[47]

P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,, Comm. Pure Appl. Math, 7 (1954), 159. doi: 10.1002/cpa.3160070112.

[48]

P. D. Lax, "Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,'', Society for Industrial and Applied Mathematics, (1973).

[49]

B. Li, J. Lowengrub, A. Rätz and A. Voigt, Geometric evolution laws for thin crystalline films: Modeling and numerics,, Commun. Comput. Phys, 6 (2009), 433.

[50]

I. M. Lifshitz, E. M. and V. V. Slyozov, The kinetics of precipitation from suprsaturated solid solutions,, Journal of Physics and Chemistry of Solids, 19 (1961), 35.

[51]

J. S. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission,, Phys. Rev. E (3), 79 (2009).

[52]

M. A. Miodownik, P. Smereka, D. J. Srolovitz and E. A. Holm, Scaling of dislocation cell structures: diffusion in orientation space,, Proceedings Of The Royal Society A-Mathematical Physical And Engineering Sciences, 457 (2001), 1807. doi: 10.1098/rspa.2001.0794.

[53]

W. W. Mullins, "Solid Surface Morphologies Governed by Capillarity,'', American Society for Metals, (1963), 17.

[54]

W. W. Mullins, On idealized 2-dimensional grain growth,, Scripta Metallurgica, 22 (1988), 1441. doi: 10.1016/S0036-9748(88)80016-4.

[55]

F. Otto, T. Rump and D. Slepčev, Coarsening rates for a droplet model: rigorous upper bounds,, SIAM J. Math. Anal, 38 (2006), 503. doi: 10.1137/050630192.

[56]

G. S. Rohrer, Influence of interface anisotropy on grain growth and coarsening,, Annual Review of Materials Research, 35 (2005), 99. doi: 10.1146/annurev.matsci.33.041002.094657.

[57]

A. D. Rollett, S.-B. Lee, R. Campman and G. S. Rohrer, Three-dimensional characterization of microstructure by electron back-scatter diffraction,, Annual Review of Materials Research, 37 (2007), 627. doi: 10.1146/annurev.matsci.37.052506.084401.

[58]

D. M. Saylor, A. Morawiec and G. S. Rohrer, The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters,, Acta Materialia, 51 (2003), 3675. doi: 10.1016/S1359-6454(03)00182-4.

[59]

C. S. Smith, Grain shapes and other metallurgical applications of topology,, in, (1952), 65.

[60]

H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods,, J. Comput. Phys, 56 (1984), 363. doi: 10.1016/0021-9991(84)90103-7.

[61]

A. Toselli and O. Widlund, "Domain Decomposition Methods—Algorithms and Theory,", volume \textbf{34} of Springer Series in Computational Mathematics, 34 (2005).

[62]

C. Villani, "Topics in Optimal Transportation,'', volume \textbf{58} of Graduate Studies in Mathematics, 58 (2003).

[63]

J. Von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks,, J. Appl. Phys, 21 (1950), 232. doi: 10.1063/1.1699639.

[64]

C Wagner, Theorie der alterung von niederschlagen durch umlosen (Ostwald-Reifung),, Zeitschrift fur Elektrochemie, 65 (1961), 581.

show all references

References:
[1]

B. L. Adams, D. Kinderlehrer, I. Livshits, D. Mason, W. W. Mullins, G. S. Rohrer, A. D. Rollett, D. Saylor, S Ta'asan and C. Wu, Extracting grain boundary energy from triple junction measurement,, Interface Science, 7 (1999), 321. doi: 10.1023/A:1008733728830.

[2]

B. L. Adams, D. Kinderlehrer, W. W. Mullins, A. D. Rollett and S. Ta'asan, Extracting the relative grain boundary free energy and mobility functions from the geometry of microstructures,, Scripta Materiala, 38 (1998), 531. doi: 10.1016/S1359-6462(97)00530-7.

[3]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,'', Lectures in Mathematics ETH Z\, (2008).

[4]

T. Arbogast, Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Locally conservative numerical methods for flow in porous media,, Comput. Geosci, 6 (2002), 453. doi: 10.1023/A:1021295215383.

[5]

T. Arbogast and H. L. Lehr, Homogenization of a Darcy-Stokes system modeling vuggy porous media,, Comput. Geosci, 10 (2006), 291. doi: 10.1007/s10596-006-9024-8.

[6]

M. Balhoff, A. Mikelić and Mary F. Wheeler, Polynomial filtration laws for low Reynolds number flows through porous media,, Transp. Porous Media, 81 (2010), 35. doi: 10.1007/s11242-009-9388-z.

[7]

M. T. Balhoff, S. G. Thomas and M. F. Wheeler, Mortar coupling and upscaling of pore-scale models,, Comput. Geosci, 12 (2008), 15. doi: 10.1007/s10596-007-9058-6.

[8]

K. Barmak, unpublished., unpublished., (none).

[9]

K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp and S. Ta'asan, Predictive theory for the grain boundary character distribution,, in, (2010).

[10]

K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp and S. Ta'asan, "Critical Events, Entropy, and the Grain Boundary Character Distribution,'', Center for Nonlinear Analysis 10-CNA-014, (2010).

[11]

K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer and S. Ta'asan, Geometric growth and character development in large metastable systems,, Rendiconti di Matematica, 29 (2009), 65.

[12]

K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer and S. Ta'asan, On a statistical theory of critical events in microstructural evolution,, in, (2007), 185.

[13]

K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer and S. Ta'asan, Towards a statistical theory of texture evolution in polycrystals,, SIAM Journal Sci. Comp, 30 (2007), 3150. doi: 10.1137/070692352.

[14]

K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer and S. Ta'asan, A new perspective on texture evolution,, International Journal on Numerical Analysis and Modeling, 5 (2008), 93.

[15]

K. Barmak, D. Kinderlehrer, I. Livshits and S. Ta'asan, Remarks on a multiscale approach to grain growth in polycrystals,, In, 68 (2006), 1.

[16]

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,, Numer. Math, 84 (2000), 375. doi: 10.1007/s002110050002.

[17]

G. Bertotti, "Hysteresis in Magnetism,'', Academic Press, (1998).

[18]

E. Bouchbinder and J. S. Langer, Nonequilibrium thermodynamics of driven amorphous materials. i. Internal degrees of freedom and volume deformation,, Physical Review E, 80 (2009).

[19]

E. Bouchbinder and J. S. Langer, Nonequilibrium thermodynamics of driven amorphous materials. ii. effective-temperature theory,, Physical Review E, 80 (2009).

[20]

E. Bouchbinder and J. S. Langer, Nonequilibrium thermodynamics of driven amorphous materials. iii. shear-transformation-zone plasticity,, Physical Review E, 80 (2009).

[21]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation,, Arch. Rational Mech. Anal., 124 (1993), 355.

[22]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,'', Studies in Mathematics and its Applications, 4 (1978). doi: 10.1016/S0168-2024(08)70178-4.

[23]

A. Cohen, A stochastic approach to coarsening of cellular networks,, Multiscale Model. Simul, 8 (2009), 463.

[24]

A. DeSimone, R. V. Kohn, S. Müller, F. Otto and R. Schäfer, Two-dimensional modelling of soft ferromagnetic films,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci, 457 (2001), 2983.

[25]

Y. Epshteyn and B. Rivière, On the solution of incompressible two-phase flow by a p-version discontinuous Galerkin method,, Comm. Numer. Methods Engrg, 22 (2006), 741. doi: 10.1002/cnm.846.

[26]

Y. Epshteyn and B. Rivière, Fully implicit discontinuous finite element methods for two-phase flow,, Applied Numerical Mathematics, 57 (2007), 383. doi: 10.1016/j.apnum.2006.04.004.

[27]

M. Frechet, Sur la distance de deux lois de probabilite,, Comptes Rendus de l' Academie des Sciences Serie I-Mathematique, 244 (1957), 689.

[28]

C. Gardiner, "Stochastic Methods, 4th Edition,'', Springer-Verlag, (2009).

[29]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,, Mat. Sb. (N.S.), 47 (1959), 271.

[30]

S. K. Godunov and V. S. Ryaben'kii, "Difference Schemes. An Introduction to the Underlying Theory,'', volume \textbf{19} of Studies in Mathematics and its Applications, 19 (1987).

[31]

J. Gruber, H. M. Miller, T. D. Hoffmann, G. S. Rohrer and A. D. Rollett, Misorientation texture development during grain growth. part i: Simulation and experiment,, Acta Materialia, 57 (2009), 6102. doi: 10.1016/j.actamat.2009.08.036.

[32]

J. Gruber, A. D. Rollett and G. S. Rohrer, Misorientation texture development during grain growth. part ii: Theory,, Acta Materialia, 58 (2010), 14. doi: 10.1016/j.actamat.2009.08.032.

[33]

M. Gurtin, "Thermomechanics of Evolving Phase Boundaries in the Plane,'', Oxford, (1993).

[34]

R. Helmig, "Multiphase Flow and Transport Processes in the Subsurface,'', Springer, (1997).

[35]

C. Herring, Surface tension as a motivation for sintering,, in, (1951), 143.

[36]

C. Herring, The use of classical macroscopic concepts in surface energy problems,, In, (1952), 5.

[37]

E. A. Holm, G. N. Hassold and M. A. Miodownik, On misorientation distribution evolution during anisotropic grain growth,, Acta Materialia, 49 (2001), 2981. doi: 10.1016/S1359-6454(01)00207-5.

[38]

A. Iserles, "A First Course in the Numerical Analysis of Differential Equations,'', Cambridge Texts in Applied Mathematics. Cambridge University Press, (1996).

[39]

R. Jordan, D. Kinderlehrer and F. Otto, Free energy and the fokker-planck equation,, Physica D, 107 (1997), 265. doi: 10.1016/S0167-2789(97)00093-6.

[40]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the fokker-planck equation,, SIAM J. Math. Analysis, 29 (1998), 1. doi: 10.1137/S0036141096303359.

[41]

D. Kinderlehrer, J. Lee, I. Livshits, A. Rollett and S. Ta'asan, Mesoscale simulation of grain growth,, Recrystalliztion and Grain Growth, 467-470 (2004), 467.

[42]

D. Kinderlehrer and C. Liu, Evolution of grain boundaries,, Mathematical Models and Methods in Applied Sciences, 11 (2001), 713. doi: 10.1142/S0218202501001069.

[43]

D. Kinderlehrer, I. Livshits, G. S. Rohrer, S. Ta'asan and P. Yu, Mesoscale simulation of the evolution of the grain boundary character distribution,, Recrystallization and grain growth, 467-470 (2004), 467.

[44]

D. Kinderlehrer, I. Livshits and S. Ta'asan, A variational approach to modeling and simulation of grain growth,, SIAM J. Sci. Comp, 28 (2006), 1694. doi: 10.1137/030601971.

[45]

R. V. Kohn and F. Otto, Upper bounds on coarsening rates,, Comm. Math. Phys, 229 (2002), 375. doi: 10.1007/s00220-002-0693-4.

[46]

L. D. Landau and E. M. Lifshitz, "Fluid Mechanics,'', Translated from the Russian by J. B. Sykes and W. H. Reid. Course of Theoretical Physics, 6 (1959).

[47]

P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,, Comm. Pure Appl. Math, 7 (1954), 159. doi: 10.1002/cpa.3160070112.

[48]

P. D. Lax, "Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,'', Society for Industrial and Applied Mathematics, (1973).

[49]

B. Li, J. Lowengrub, A. Rätz and A. Voigt, Geometric evolution laws for thin crystalline films: Modeling and numerics,, Commun. Comput. Phys, 6 (2009), 433.

[50]

I. M. Lifshitz, E. M. and V. V. Slyozov, The kinetics of precipitation from suprsaturated solid solutions,, Journal of Physics and Chemistry of Solids, 19 (1961), 35.

[51]

J. S. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission,, Phys. Rev. E (3), 79 (2009).

[52]

M. A. Miodownik, P. Smereka, D. J. Srolovitz and E. A. Holm, Scaling of dislocation cell structures: diffusion in orientation space,, Proceedings Of The Royal Society A-Mathematical Physical And Engineering Sciences, 457 (2001), 1807. doi: 10.1098/rspa.2001.0794.

[53]

W. W. Mullins, "Solid Surface Morphologies Governed by Capillarity,'', American Society for Metals, (1963), 17.

[54]

W. W. Mullins, On idealized 2-dimensional grain growth,, Scripta Metallurgica, 22 (1988), 1441. doi: 10.1016/S0036-9748(88)80016-4.

[55]

F. Otto, T. Rump and D. Slepčev, Coarsening rates for a droplet model: rigorous upper bounds,, SIAM J. Math. Anal, 38 (2006), 503. doi: 10.1137/050630192.

[56]

G. S. Rohrer, Influence of interface anisotropy on grain growth and coarsening,, Annual Review of Materials Research, 35 (2005), 99. doi: 10.1146/annurev.matsci.33.041002.094657.

[57]

A. D. Rollett, S.-B. Lee, R. Campman and G. S. Rohrer, Three-dimensional characterization of microstructure by electron back-scatter diffraction,, Annual Review of Materials Research, 37 (2007), 627. doi: 10.1146/annurev.matsci.37.052506.084401.

[58]

D. M. Saylor, A. Morawiec and G. S. Rohrer, The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters,, Acta Materialia, 51 (2003), 3675. doi: 10.1016/S1359-6454(03)00182-4.

[59]

C. S. Smith, Grain shapes and other metallurgical applications of topology,, in, (1952), 65.

[60]

H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods,, J. Comput. Phys, 56 (1984), 363. doi: 10.1016/0021-9991(84)90103-7.

[61]

A. Toselli and O. Widlund, "Domain Decomposition Methods—Algorithms and Theory,", volume \textbf{34} of Springer Series in Computational Mathematics, 34 (2005).

[62]

C. Villani, "Topics in Optimal Transportation,'', volume \textbf{58} of Graduate Studies in Mathematics, 58 (2003).

[63]

J. Von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks,, J. Appl. Phys, 21 (1950), 232. doi: 10.1063/1.1699639.

[64]

C Wagner, Theorie der alterung von niederschlagen durch umlosen (Ostwald-Reifung),, Zeitschrift fur Elektrochemie, 65 (1961), 581.

[1]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[2]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[3]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[4]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[5]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[6]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[7]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[8]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[9]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[10]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[11]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[12]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[13]

Hayden Schaeffer, John Garnett, Luminita A. Vese. A texture model based on a concentration of measure. Inverse Problems & Imaging, 2013, 7 (3) : 927-946. doi: 10.3934/ipi.2013.7.927

[14]

Roberto Serra, Marco Villani, Alex Graudenzi, Annamaria Colacci, Stuart A. Kauffman. The simulation of gene knock-out in scale-free random Boolean models of genetic networks. Networks & Heterogeneous Media, 2008, 3 (2) : 333-343. doi: 10.3934/nhm.2008.3.333

[15]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[16]

Gaohang Yu. A derivative-free method for solving large-scale nonlinear systems of equations. Journal of Industrial & Management Optimization, 2010, 6 (1) : 149-160. doi: 10.3934/jimo.2010.6.149

[17]

Masataka Kato, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of energy-saving server scheduling on power consumption for large-scale data centers. Journal of Industrial & Management Optimization, 2016, 12 (2) : 667-685. doi: 10.3934/jimo.2016.12.667

[18]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -- efficient solution strategies based on homogenization theory. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 183-219. doi: 10.3934/naco.2016008

[19]

Gianluca Mola. Recovering a large number of diffusion constants in a parabolic equation from energy measurements. Inverse Problems & Imaging, 2018, 12 (3) : 527-543. doi: 10.3934/ipi.2018023

[20]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803

[Back to Top]