# American Institute of Mathematical Sciences

May  2011, 30(2): 547-558. doi: 10.3934/dcds.2011.30.547

## Decay estimation for positive solutions of a $\gamma$-Laplace equation

 1 School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210097 2 Department of Applied Mathematics, University of Colorado at Boulder 3 Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309

Received  June 2010 Published  February 2011

In this paper, we study the properties of the positive solutions of a $\gamma$-Laplace equation in $R^n$

-div$(|\nabla u|^{\gamma-2}\nabla u) =K u^p$,

Here $1<\gamma<2$, $n>\gamma$, $p=\frac{(\gamma-1)(n+\gamma)}{n-\gamma}$ and $K(x)$ is a smooth function bounded by two positive constants. First, the positive solution $u$ of the $\gamma$-Laplace equation above satisfies an integral equation involving a Wolff potential. Based on this, we estimate the decay rate of the positive solutions of the $\gamma$-Laplace equation at infinity. A new method is introduced to fully explore the integrability result established recently by Ma, Chen and Li on Wolff type integral equations to derive the decay estimate.

Citation: Yutian Lei, Congming Li, Chao Ma. Decay estimation for positive solutions of a $\gamma$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 547-558. doi: 10.3934/dcds.2011.30.547
##### References:
 [1] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. doi: 10.1002/cpa.3160420304. Google Scholar [2] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar [3] W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547. doi: 10.2307/2951844. Google Scholar [4] W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5. Google Scholar [5] W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, preprint, (2009). Google Scholar [6] W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar [7] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar [8] C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities,, Potential Analysis, 16 (2002), 347. doi: 10.1023/A:1014845728367. Google Scholar [9] A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry,, Math. Res. Letters, 4 (1997), 91. Google Scholar [10] S. Ding, On some imbedding theorems,, Sci. Sinica, 21 (1978), 287. Google Scholar [11] L. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems,'', Cambridge Unversity Press, (2000). doi: 10.1017/CBO9780511569203. Google Scholar [12] M. Franca, Classification of positive solutions of p-Laplace equation with a growth term,, Archivum Mathematicum, 40 (2004), 415. Google Scholar [13] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, 7a (1981). Google Scholar [14] L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenobel), 33 (1983), 161. Google Scholar [15] C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X. Google Scholar [16] C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. PDEs, 26 (2006), 447. Google Scholar [17] T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Scuola Norm. Sup. Pisa, 19 (1992), 591. Google Scholar [18] T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137. doi: 10.1007/BF02392793. Google Scholar [19] C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221. Google Scholar [20] C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453. Google Scholar [21] C. Li and L. Ma, Uniqueness of positive bound states to Schrodinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049. doi: 10.1137/080712301. Google Scholar [22] Y. Li, Remark on some conformally invariant integral equations: the method of moving planes,, Journal of European Mathematical Society, 6 (2004), 153. doi: 10.4171/JEMS/6. Google Scholar [23] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar [24] C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020. Google Scholar [25] J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513. doi: 10.1007/s00229-003-0358-4. Google Scholar [26] N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859. doi: 10.4007/annals.2008.168.859. Google Scholar [27] J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304. doi: 10.1007/BF00250468. Google Scholar [28] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79. doi: 10.1007/BF02392645. Google Scholar [29] E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503. Google Scholar

show all references

##### References:
 [1] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. doi: 10.1002/cpa.3160420304. Google Scholar [2] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar [3] W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547. doi: 10.2307/2951844. Google Scholar [4] W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5. Google Scholar [5] W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, preprint, (2009). Google Scholar [6] W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar [7] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar [8] C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities,, Potential Analysis, 16 (2002), 347. doi: 10.1023/A:1014845728367. Google Scholar [9] A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry,, Math. Res. Letters, 4 (1997), 91. Google Scholar [10] S. Ding, On some imbedding theorems,, Sci. Sinica, 21 (1978), 287. Google Scholar [11] L. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems,'', Cambridge Unversity Press, (2000). doi: 10.1017/CBO9780511569203. Google Scholar [12] M. Franca, Classification of positive solutions of p-Laplace equation with a growth term,, Archivum Mathematicum, 40 (2004), 415. Google Scholar [13] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, 7a (1981). Google Scholar [14] L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenobel), 33 (1983), 161. Google Scholar [15] C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X. Google Scholar [16] C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. PDEs, 26 (2006), 447. Google Scholar [17] T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Scuola Norm. Sup. Pisa, 19 (1992), 591. Google Scholar [18] T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137. doi: 10.1007/BF02392793. Google Scholar [19] C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221. Google Scholar [20] C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453. Google Scholar [21] C. Li and L. Ma, Uniqueness of positive bound states to Schrodinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049. doi: 10.1137/080712301. Google Scholar [22] Y. Li, Remark on some conformally invariant integral equations: the method of moving planes,, Journal of European Mathematical Society, 6 (2004), 153. doi: 10.4171/JEMS/6. Google Scholar [23] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar [24] C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020. Google Scholar [25] J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513. doi: 10.1007/s00229-003-0358-4. Google Scholar [26] N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859. doi: 10.4007/annals.2008.168.859. Google Scholar [27] J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304. doi: 10.1007/BF00250468. Google Scholar [28] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79. doi: 10.1007/BF02392645. Google Scholar [29] E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503. Google Scholar
 [1] Wu Chen, Zhongxue Lu. Existence and nonexistence of positive solutions to an integral system involving Wolff potential. Communications on Pure & Applied Analysis, 2016, 15 (2) : 385-398. doi: 10.3934/cpaa.2016.15.385 [2] Huan Chen, Zhongxue Lü. The properties of positive solutions to an integral system involving Wolff potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1879-1904. doi: 10.3934/dcds.2014.34.1879 [3] Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111 [4] Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25 [5] Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317 [6] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [7] Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987 [8] Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21 [9] Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic & Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383 [10] Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175 [11] Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074 [12] Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347 [13] Jialin Hong, Lijun Miao, Liying Zhang. Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4295-4315. doi: 10.3934/dcdsb.2019120 [14] Tomáš Bárta. Exact rate of decay for solutions to damped second order ODE's with a degenerate potential. Evolution Equations & Control Theory, 2018, 7 (4) : 531-543. doi: 10.3934/eect.2018025 [15] Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 [16] Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151 [17] Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083 [18] Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067 [19] Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590 [20] Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

2018 Impact Factor: 1.143