# American Institute of Mathematical Sciences

August  2011, 30(3): 791-806. doi: 10.3934/dcds.2011.30.791

## Global bifurcation and stable two-phase separation for a phase field model in a disk

 1 Department of Mathematics, Tokyo Institute of Technology, O-Okayama, Meguro-ku, Tokyo 152-8551, Japan

Received  January 2010 Revised  October 2010 Published  March 2011

Let D:$=\{(x,y);\ x^2+y^2 < l^2\}\subset\R^2$. We study the shape of a local minimizer of the problem

$E(u)=\int_{D}(\frac{|\nabla u|^2}{2}+\lambda W(u)) dx\ \$subject to$\ \ m=\frac{1}{|D|}\int_Dudx$

and study the global structure of critical points. We show that for an arbitrary potential $W\in C^4$ every level set of every nonconstant local minimizer is a $C^1$-curve and it divides $D$ into exactly two simply connected subdomains. Next we consider the case $W(u)=(u^2-1)^2/4$ (Cahn-Hilliard equation). When $\lambda$ varies and $m$ is fixed, we show that this problem has an unbounded continuum of critical points. When $m$ varies and $\lambda$ is fixed, we show that this problem has a bounded continuum meeting at two different points on the trivial branch. Moreover, we show that in each case a bifurcating critical point is stable (a local minimizer) near the bifurcation point in a certain parameter range. The main technique is the nodal curve which relates the shape with the Morse index. We do not use a small parameter or the $\Gamma$-convergence technique.

Citation: Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791
##### References:
 [1] J. Carr, M. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351. doi: 10.1007/BF00280031. [2] R. Casten and C. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations, 27 (1978), 266-273. doi: 10.1016/0022-0396(78)90033-5. [3] P. Freitas and C. Rocha, Lyapunov functionals and stability for FitzHugh-Nagumo systems, J. Differential Equations, 169 (2001), 208-227. doi: 10.1006/jdeq.2000.3901. [4] M. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math., 46 (1988), 301-317. [5] M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 351-370. [6] B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M. P. Owen, Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains, Comm. Math. Phys., 202 (1999), 629-649. doi: 10.1007/s002200050599. [7] P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math., 75 (1953), 449-476. doi: 10.2307/2372496. [8] H. Kielhöfer, Pattern formation of the stationary Cahn-Hilliard model, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1219-1243. [9] H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs," Applied Mathematical Sciences, 156, Springer-Verlag, New York, 2004, viii+346 pp. [10] S. Kosugi, Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629. doi: 10.3934/dcds.2007.19.609. [11] S. Luckhaus and L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83. doi: 10.1007/BF00251427. [12] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454. doi: 10.2977/prims/1195188180. [13] H. Matano, Private communication (2005). [14] B. McCartin, Eigenstructure of the equilateral triangle. II. The Neumann problem, Math. Probl. Eng., 8 (2002), 517-539. doi: 10.1080/1024123021000053664. [15] Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations, 229 (2006), 494-508. doi: 10.1016/j.jde.2006.03.015. [16] Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball II, J. Differential Equations, 239 (2007), 61-71. doi: oi:10.1016/j.jde.2007.05.006. [17] Y. Miyamoto, On the shape of the stable patterns for activator-inhibitor systems in two-dimensional domains, Quart. Appl. Math., 65 (2007), 357-374. [18] Y. Miyamoto, Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal., 256 (2009), 747-776. doi: 10.1016/j.jfa.2008.11.023. [19] Y. Miyamoto, The "hot spots" conjecture for a certain class of planar convex domains, J. Math. Phys., 50 (2009), 103530, 7pp. [20] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142. doi: 10.1007/BF00251230. [21] S. Maier-Paape and U. Miller, Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square, Discrete Contin. Dyn. Syst., 15 (2006), 1137-1153. doi: 10.3934/dcds.2006.15.1137. [22] Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit, Dynamics Reported, 3 (1994), 25-103. [23] W. M. Ni, P. Poláčik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc., 353 (2001), 5057-5069. doi: 10.1090/S0002-9947-01-02880-X. [24] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260. doi: 10.1007/BF00253122. [25] T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349. doi: 10.1016/j.na.2008.12.007. [26] P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400. doi: 10.1007/s002050050081. [27] E. Yanagida, Private communication (2006).

show all references

##### References:
 [1] J. Carr, M. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984), 317-351. doi: 10.1007/BF00280031. [2] R. Casten and C. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations, 27 (1978), 266-273. doi: 10.1016/0022-0396(78)90033-5. [3] P. Freitas and C. Rocha, Lyapunov functionals and stability for FitzHugh-Nagumo systems, J. Differential Equations, 169 (2001), 208-227. doi: 10.1006/jdeq.2000.3901. [4] M. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math., 46 (1988), 301-317. [5] M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 351-370. [6] B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and M. P. Owen, Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains, Comm. Math. Phys., 202 (1999), 629-649. doi: 10.1007/s002200050599. [7] P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math., 75 (1953), 449-476. doi: 10.2307/2372496. [8] H. Kielhöfer, Pattern formation of the stationary Cahn-Hilliard model, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1219-1243. [9] H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs," Applied Mathematical Sciences, 156, Springer-Verlag, New York, 2004, viii+346 pp. [10] S. Kosugi, Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629. doi: 10.3934/dcds.2007.19.609. [11] S. Luckhaus and L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83. doi: 10.1007/BF00251427. [12] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454. doi: 10.2977/prims/1195188180. [13] H. Matano, Private communication (2005). [14] B. McCartin, Eigenstructure of the equilateral triangle. II. The Neumann problem, Math. Probl. Eng., 8 (2002), 517-539. doi: 10.1080/1024123021000053664. [15] Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations, 229 (2006), 494-508. doi: 10.1016/j.jde.2006.03.015. [16] Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball II, J. Differential Equations, 239 (2007), 61-71. doi: oi:10.1016/j.jde.2007.05.006. [17] Y. Miyamoto, On the shape of the stable patterns for activator-inhibitor systems in two-dimensional domains, Quart. Appl. Math., 65 (2007), 357-374. [18] Y. Miyamoto, Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal., 256 (2009), 747-776. doi: 10.1016/j.jfa.2008.11.023. [19] Y. Miyamoto, The "hot spots" conjecture for a certain class of planar convex domains, J. Math. Phys., 50 (2009), 103530, 7pp. [20] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142. doi: 10.1007/BF00251230. [21] S. Maier-Paape and U. Miller, Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square, Discrete Contin. Dyn. Syst., 15 (2006), 1137-1153. doi: 10.3934/dcds.2006.15.1137. [22] Y. Nishiura, Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit, Dynamics Reported, 3 (1994), 25-103. [23] W. M. Ni, P. Poláčik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc., 353 (2001), 5057-5069. doi: 10.1090/S0002-9947-01-02880-X. [24] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260. doi: 10.1007/BF00253122. [25] T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349. doi: 10.1016/j.na.2008.12.007. [26] P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400. doi: 10.1007/s002050050081. [27] E. Yanagida, Private communication (2006).
 [1] Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73 [2] Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa. A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition. Communications on Pure and Applied Analysis, 2022, 21 (2) : 355-392. doi: 10.3934/cpaa.2021181 [3] Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207 [4] Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013 [5] Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033 [6] Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461 [7] Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423 [8] Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741 [9] Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 [10] Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303 [11] Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037 [12] Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163 [13] Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31 [14] Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275 [15] S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137 [16] Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511 [17] Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure and Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277 [18] Amy Novick-Cohen, Andrey Shishkov. Upper bounds for coarsening for the degenerate Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 251-272. doi: 10.3934/dcds.2009.25.251 [19] Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881 [20] Keith Promislow, Qiliang Wu. Undulated bilayer interfaces in the planar functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022035

2021 Impact Factor: 1.588