2011, 8(2): 253-261. doi: 10.3934/mbe.2011.8.253

A mathematical model for chronic wounds

1. 

Mathematical Biosciences Institute and Department of Mathematics, Ohio State University, Columbus, OH 43210, United States

2. 

Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, United States

Received  March 2010 Revised  August 2010 Published  April 2011

Chronic wounds are often associated with ischemic conditions whereby the blood vascular system is damaged. A mathematical model which accounts for these conditions is developed and computational results are described in the two-dimensional radially symmetric case. Preliminary results for the three-dimensional axially symmetric case are also included.
Citation: Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253
References:
[1]

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K Hunt, F. Gottrup, G. C. Gurtner and M. T. Longaker, Human skin wounds: A major and snowballing threat to public health and the economy,, Wound Repair Regen., 17 (2009), 763. doi: 10.1111/j.1524-475X.2009.00543.x. Google Scholar

[2]

R. F. Diegelmann and M. C. Evans, Wound healing: An overview of acute, fibrotic and delayed healing,, Front Biosci., 9 (2004), 283. doi: 10.2741/1184. Google Scholar

[3]

N. B. Menke, K. R. Ward, T. M. Witten, D. G. Bonchev and R. F. Diegelmann, Impaired wound healing,, Clinics in Dermatology, 25 (2007), 19. doi: 10.1016/j.clindermatol.2006.12.005. Google Scholar

[4]

A. J. Singer and R. A. Clark, Cutaneous wound healing,, N. Engl. J. Med., 341 (1999), 738. doi: 10.1056/NEJM199909023411006. Google Scholar

[5]

F. Werdin, M. Tennenhaus, H. Schaller and H. Rennekampff, Evidence-based management strategies for treatment of chronic wounds,, Eplasty, 9:e19 (2009). Google Scholar

[6]

P. D. Dale, J. A. Sherratt and P. K. Maini, A mathematical model for collagen fibre formation during foetal and adult dermal wound healing,, Proc. Biol. Sci., 263 (1996), 653. doi: 10.1098/rspb.1996.0098. Google Scholar

[7]

G. J. Pettet, H. M. Byrne, D. L. S. Mcelwain and J. Norbury, A model of wound-healing angiogenesis in soft tissue,, Math. Biosci., 136 (1996), 35. doi: 10.1016/0025-5564(96)00044-2. Google Scholar

[8]

G. Pettet, M. A. J. Chaplain, D. L. S. Mcelwain and H. M. Byrne, On the role of angiogenesis in wound healing,, Proc. R. Soc. Lond. B, 263 (1996), 1487. doi: 10.1098/rspb.1996.0217. Google Scholar

[9]

H. M. Byrne, M. A. J. Chaplain, D. L. Evans and I. Hopkinson, Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment,, J. Theor. Med., 2 (2000), 175. doi: 10.1080/10273660008833045. Google Scholar

[10]

R. C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model,, Proc. Nat. Acad. Sci. U.S.A., 105 (2008), 2628. doi: 10.1073/pnas.0711642105. Google Scholar

[11]

Y. Dor, V. Djonov and E. Keshet, Induction of vascular networks in adult organs: Implications to proangiogenic therapy,, Ann. N.Y. Acad. Sci., 995 (2003), 208. doi: 10.1111/j.1749-6632.2003.tb03224.x. Google Scholar

[12]

Y. Dor, V. Djonov and E. Keshet, Making vascular networks in the adult: Branching morphogenesis without a roadmap,, Trends in Cell Biology, 13 (2003), 131. doi: 10.1016/S0962-8924(03)00022-9. Google Scholar

[13]

S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt, Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies,, Bull. Math. Biol., 64 (2002), 673. doi: 10.1006/bulm.2002.0293. Google Scholar

[14]

A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of flow in 2d and 3d vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies,, Mathematical and Computer Modelling, 41 (2005), 1137. doi: 10.1016/j.mcm.2005.05.008. Google Scholar

[15]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis,, Bull. Math. Biol., 60 (1998), 857. doi: 10.1006/bulm.1998.0042. Google Scholar

[16]

C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds,, Proc. Nat. Acad. Sci. USA, 106 (2009), 16782. doi: 10.1073/pnas.0909115106. Google Scholar

[17]

A. Friedman, C. Huang and J. Yong, Effective permeability of the boundary of a domain,, Comm. Partial Differential Equations, 20 (1995), 59. Google Scholar

[18]

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould and C. K. Sen, Characterization of a pre-clinical model of chronic ischemic wound,, Physiol. Genomics, 37 (2009), 211. doi: 10.1152/physiolgenomics.90362.2008. Google Scholar

[19]

A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds,, SIAM J. Math. Anal., 42 (2010), 2013. doi: 10.1137/090772630. Google Scholar

show all references

References:
[1]

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K Hunt, F. Gottrup, G. C. Gurtner and M. T. Longaker, Human skin wounds: A major and snowballing threat to public health and the economy,, Wound Repair Regen., 17 (2009), 763. doi: 10.1111/j.1524-475X.2009.00543.x. Google Scholar

[2]

R. F. Diegelmann and M. C. Evans, Wound healing: An overview of acute, fibrotic and delayed healing,, Front Biosci., 9 (2004), 283. doi: 10.2741/1184. Google Scholar

[3]

N. B. Menke, K. R. Ward, T. M. Witten, D. G. Bonchev and R. F. Diegelmann, Impaired wound healing,, Clinics in Dermatology, 25 (2007), 19. doi: 10.1016/j.clindermatol.2006.12.005. Google Scholar

[4]

A. J. Singer and R. A. Clark, Cutaneous wound healing,, N. Engl. J. Med., 341 (1999), 738. doi: 10.1056/NEJM199909023411006. Google Scholar

[5]

F. Werdin, M. Tennenhaus, H. Schaller and H. Rennekampff, Evidence-based management strategies for treatment of chronic wounds,, Eplasty, 9:e19 (2009). Google Scholar

[6]

P. D. Dale, J. A. Sherratt and P. K. Maini, A mathematical model for collagen fibre formation during foetal and adult dermal wound healing,, Proc. Biol. Sci., 263 (1996), 653. doi: 10.1098/rspb.1996.0098. Google Scholar

[7]

G. J. Pettet, H. M. Byrne, D. L. S. Mcelwain and J. Norbury, A model of wound-healing angiogenesis in soft tissue,, Math. Biosci., 136 (1996), 35. doi: 10.1016/0025-5564(96)00044-2. Google Scholar

[8]

G. Pettet, M. A. J. Chaplain, D. L. S. Mcelwain and H. M. Byrne, On the role of angiogenesis in wound healing,, Proc. R. Soc. Lond. B, 263 (1996), 1487. doi: 10.1098/rspb.1996.0217. Google Scholar

[9]

H. M. Byrne, M. A. J. Chaplain, D. L. Evans and I. Hopkinson, Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment,, J. Theor. Med., 2 (2000), 175. doi: 10.1080/10273660008833045. Google Scholar

[10]

R. C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model,, Proc. Nat. Acad. Sci. U.S.A., 105 (2008), 2628. doi: 10.1073/pnas.0711642105. Google Scholar

[11]

Y. Dor, V. Djonov and E. Keshet, Induction of vascular networks in adult organs: Implications to proangiogenic therapy,, Ann. N.Y. Acad. Sci., 995 (2003), 208. doi: 10.1111/j.1749-6632.2003.tb03224.x. Google Scholar

[12]

Y. Dor, V. Djonov and E. Keshet, Making vascular networks in the adult: Branching morphogenesis without a roadmap,, Trends in Cell Biology, 13 (2003), 131. doi: 10.1016/S0962-8924(03)00022-9. Google Scholar

[13]

S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt, Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies,, Bull. Math. Biol., 64 (2002), 673. doi: 10.1006/bulm.2002.0293. Google Scholar

[14]

A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of flow in 2d and 3d vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies,, Mathematical and Computer Modelling, 41 (2005), 1137. doi: 10.1016/j.mcm.2005.05.008. Google Scholar

[15]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis,, Bull. Math. Biol., 60 (1998), 857. doi: 10.1006/bulm.1998.0042. Google Scholar

[16]

C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds,, Proc. Nat. Acad. Sci. USA, 106 (2009), 16782. doi: 10.1073/pnas.0909115106. Google Scholar

[17]

A. Friedman, C. Huang and J. Yong, Effective permeability of the boundary of a domain,, Comm. Partial Differential Equations, 20 (1995), 59. Google Scholar

[18]

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould and C. K. Sen, Characterization of a pre-clinical model of chronic ischemic wound,, Physiol. Genomics, 37 (2009), 211. doi: 10.1152/physiolgenomics.90362.2008. Google Scholar

[19]

A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds,, SIAM J. Math. Anal., 42 (2010), 2013. doi: 10.1137/090772630. Google Scholar

[1]

Avner Friedman, Bei Hu, Chuan Xue. A three dimensional model of wound healing: Analysis and computation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2691-2712. doi: 10.3934/dcdsb.2012.17.2691

[2]

Haiyan Wang, Shiliang Wu. Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1215-1227. doi: 10.3934/mbe.2014.11.1215

[3]

Sophia A. Maggelakis. Modeling the role of angiogenesis in epidermal wound healing. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 267-273. doi: 10.3934/dcdsb.2004.4.267

[4]

John A. Adam. Inside mathematical modeling: building models in the context of wound healing in bone. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 1-24. doi: 10.3934/dcdsb.2004.4.1

[5]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[6]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[7]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[8]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

[9]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

[10]

Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44

[11]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[12]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[13]

Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713

[14]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[15]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 667-684. doi: 10.3934/krm.2015.8.667

[16]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[17]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[18]

J. I. Díaz, J. F. Padial. On a free-boundary problem modeling the action of a limiter on a plasma. Conference Publications, 2007, 2007 (Special) : 313-322. doi: 10.3934/proc.2007.2007.313

[19]

Xiaofeng Ren. Shell structure as solution to a free boundary problem from block copolymer morphology. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 979-1003. doi: 10.3934/dcds.2009.24.979

[20]

Harunori Monobe, Hirokazu Ninomiya. Traveling wave solutions with convex domains for a free boundary problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 905-914. doi: 10.3934/dcds.2017037

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]