-
Previous Article
Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$
- AMC Home
- This Issue
-
Next Article
List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes
Wet paper codes and the dual distance in steganography
1. | Department of Applied Mathematics, University of Valladolid, Avda Salamanca SN, 47014 Valladolid, Castilla |
2. | Computer Science Laboratory, École Polytechnique, 91 128 Palaiseau CEDEX, INRIA Saclay, ÎIle de France |
References:
[1] |
D. Augot, M. Barbier and C. Fontaine, Ensuring message embedding in wet paper steganography,, in, (2011), 244. Google Scholar |
[2] |
J. Brierbrauer and J. Fridrich, Constructing good covering codes for applications in steganography,, in, (2008), 1.
doi: 10.1007/978-3-540-69019-1_1. |
[3] |
F. Chai, X. S. Gao and C. Yuan, A characteristic set method for solving Boolean equations and applications in cryptanalysis of stream ciphers,, J. Sys. Sci. Compl., 21 (2008), 191.
doi: 10.1007/s11424-008-9103-0. |
[4] |
C. Cooper, On the rank of random matrices,, Random Struc. Algor., 16 (2000), 209.
doi: 10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1. |
[5] |
R. Crandall, Some notes on steganography,, \url{http://os.inf.tu-dresden.de/ westfeld}, (). Google Scholar |
[6] |
C. Fontaine and F. Galand, How Reed-Solomon codes can improve steganographic schemes,, in, (2007), 130. Google Scholar |
[7] |
J. Fridrich, M. Goljan, P. Lisonek and D. Soukal, Writing on wet paper,, IEEE Trans. Signal Proc., 53 (2005), 3923.
doi: 10.1109/TSP.2005.855393. |
[8] |
J. Fridrich, M. Goljan and D. Soukal, Efficient wet paper codes,, in, (2005).
doi: 10.1007/b104759. |
[9] |
J. Fridrich, M. Goljan and D. Soukal, Steganography via codes for memory with defective cells,, in, (2005), 1521. Google Scholar |
[10] |
J. Fridrich, M. Goljan and D. Soukal, Wet paper codes with improved embedding efficiency,, IEEE Trans. Inform. Forens. Secur., 1 (2006), 102.
doi: 10.1109/TIFS.2005.863487. |
[11] |
B. J. Hamilton, SINCGARS system improvement program (SIP) specific radio improvement,, in, (1996), 397. Google Scholar |
[12] |
R. W. Hamming, "The Art of Probability for Scientists and Engineers,'', Westview Press, (1994). Google Scholar |
[13] |
A. S. Hedayat, N. J. A. Sloane and J. Stufken, "Orthogonal Arrays: Theory and Applications,'', Springer-Verlag, (1999).
|
[14] |
M. Keinänen, "Techniques for Solving Boolean Equation Systems,'', Ph.D thesis, (2006). Google Scholar |
[15] |
V. F. Kolchin, "Random Graphs,'', Cambridge University Press, (1999).
|
[16] |
F. J. MacWilliams and N. J. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland Publishing Co., (1977).
|
[17] |
MinT, Online database for optimal parameters of $(t, m, s)$-nets, $(t, s)$-sequences, orthogonal arrays, linear codes, and OOAs,, available at \url{http://mint.sbg.ac.at/}, (). Google Scholar |
[18] |
C. Munuera, On the generalized Hamming weights of geometric Goppa codes,, IEEE Trans. Inform. Theory, 40 (1994), 2092.
doi: 10.1109/18.340488. |
[19] |
M. Nadler, A 32-point $n=12$, $d=5$ code,, IRE Trans. Inform. Theory, 8 (1962).
doi: 10.1109/TIT.1962.1057670. |
[20] |
D. Schönfeld and A. Winkler, Embedding with syndrome coding based on BCH codes,, in, (2006), 214. Google Scholar |
[21] |
D. Schönfeld and A. Winkler, Reducing the complexity of syndrome coding for embedding,, in, (2007), 145. Google Scholar |
[22] |
B.-Z. Shen, A Justesen construction of binary concatenated codes that asymptotically meet the Zyablov bound for low rate,, IEEE Trans. Inform. Theory, 39 (1993), 239.
doi: 10.1109/18.179365. |
[23] |
D. Stinson, Resilient functions and large sets of orthogonal arrays,, Congressus Numerantium, 92 (1993), 105.
|
[24] |
C. Studholme and I. F. Blake, Random matrices and codes for the erasure channel,, Algoritmica, 56 (2010), 605.
doi: 10.1007/s00453-008-9192-0. |
[25] |
J. H. van Lint, A new description of the Nadler code,, IEEE Trans. Inform. Theory, 18 (1972), 825.
doi: 10.1109/TIT.1972.1054904. |
[26] |
J. H. van Lint, "Introduction to Coding Theory,'', Springer-Verlag, (1982). Google Scholar |
[27] |
V. K. Wei, Generalized Hamming weights for linear codes,, IEEE Trans. Inform. Theory, 37 (1991), 1412.
doi: 10.1109/18.133259. |
[28] |
W. Zhang, X. Zhang and S. Wang, Maximizing embedding efficiency by combining Hamming codes and wet paper codes,, in, (2008), 60. Google Scholar |
show all references
References:
[1] |
D. Augot, M. Barbier and C. Fontaine, Ensuring message embedding in wet paper steganography,, in, (2011), 244. Google Scholar |
[2] |
J. Brierbrauer and J. Fridrich, Constructing good covering codes for applications in steganography,, in, (2008), 1.
doi: 10.1007/978-3-540-69019-1_1. |
[3] |
F. Chai, X. S. Gao and C. Yuan, A characteristic set method for solving Boolean equations and applications in cryptanalysis of stream ciphers,, J. Sys. Sci. Compl., 21 (2008), 191.
doi: 10.1007/s11424-008-9103-0. |
[4] |
C. Cooper, On the rank of random matrices,, Random Struc. Algor., 16 (2000), 209.
doi: 10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1. |
[5] |
R. Crandall, Some notes on steganography,, \url{http://os.inf.tu-dresden.de/ westfeld}, (). Google Scholar |
[6] |
C. Fontaine and F. Galand, How Reed-Solomon codes can improve steganographic schemes,, in, (2007), 130. Google Scholar |
[7] |
J. Fridrich, M. Goljan, P. Lisonek and D. Soukal, Writing on wet paper,, IEEE Trans. Signal Proc., 53 (2005), 3923.
doi: 10.1109/TSP.2005.855393. |
[8] |
J. Fridrich, M. Goljan and D. Soukal, Efficient wet paper codes,, in, (2005).
doi: 10.1007/b104759. |
[9] |
J. Fridrich, M. Goljan and D. Soukal, Steganography via codes for memory with defective cells,, in, (2005), 1521. Google Scholar |
[10] |
J. Fridrich, M. Goljan and D. Soukal, Wet paper codes with improved embedding efficiency,, IEEE Trans. Inform. Forens. Secur., 1 (2006), 102.
doi: 10.1109/TIFS.2005.863487. |
[11] |
B. J. Hamilton, SINCGARS system improvement program (SIP) specific radio improvement,, in, (1996), 397. Google Scholar |
[12] |
R. W. Hamming, "The Art of Probability for Scientists and Engineers,'', Westview Press, (1994). Google Scholar |
[13] |
A. S. Hedayat, N. J. A. Sloane and J. Stufken, "Orthogonal Arrays: Theory and Applications,'', Springer-Verlag, (1999).
|
[14] |
M. Keinänen, "Techniques for Solving Boolean Equation Systems,'', Ph.D thesis, (2006). Google Scholar |
[15] |
V. F. Kolchin, "Random Graphs,'', Cambridge University Press, (1999).
|
[16] |
F. J. MacWilliams and N. J. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland Publishing Co., (1977).
|
[17] |
MinT, Online database for optimal parameters of $(t, m, s)$-nets, $(t, s)$-sequences, orthogonal arrays, linear codes, and OOAs,, available at \url{http://mint.sbg.ac.at/}, (). Google Scholar |
[18] |
C. Munuera, On the generalized Hamming weights of geometric Goppa codes,, IEEE Trans. Inform. Theory, 40 (1994), 2092.
doi: 10.1109/18.340488. |
[19] |
M. Nadler, A 32-point $n=12$, $d=5$ code,, IRE Trans. Inform. Theory, 8 (1962).
doi: 10.1109/TIT.1962.1057670. |
[20] |
D. Schönfeld and A. Winkler, Embedding with syndrome coding based on BCH codes,, in, (2006), 214. Google Scholar |
[21] |
D. Schönfeld and A. Winkler, Reducing the complexity of syndrome coding for embedding,, in, (2007), 145. Google Scholar |
[22] |
B.-Z. Shen, A Justesen construction of binary concatenated codes that asymptotically meet the Zyablov bound for low rate,, IEEE Trans. Inform. Theory, 39 (1993), 239.
doi: 10.1109/18.179365. |
[23] |
D. Stinson, Resilient functions and large sets of orthogonal arrays,, Congressus Numerantium, 92 (1993), 105.
|
[24] |
C. Studholme and I. F. Blake, Random matrices and codes for the erasure channel,, Algoritmica, 56 (2010), 605.
doi: 10.1007/s00453-008-9192-0. |
[25] |
J. H. van Lint, A new description of the Nadler code,, IEEE Trans. Inform. Theory, 18 (1972), 825.
doi: 10.1109/TIT.1972.1054904. |
[26] |
J. H. van Lint, "Introduction to Coding Theory,'', Springer-Verlag, (1982). Google Scholar |
[27] |
V. K. Wei, Generalized Hamming weights for linear codes,, IEEE Trans. Inform. Theory, 37 (1991), 1412.
doi: 10.1109/18.133259. |
[28] |
W. Zhang, X. Zhang and S. Wang, Maximizing embedding efficiency by combining Hamming codes and wet paper codes,, in, (2008), 60. Google Scholar |
[1] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[2] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]