-
Previous Article
Entropy and exact Devaney chaos on totally regular continua
- DCDS Home
- This Issue
-
Next Article
Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems
On the stability of periodic orbits in delay equations with large delay
1. | Harrison Building, North Park Road, CEMPS, University of Exeter, Exeter, EX4 4QF, United Kingdom |
2. | Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany |
3. | Institute of Mathematics, Humboldt University of Berlin, Rudower Chaussee 25, 12489, Berlin |
References:
[1] |
Report TW 330, Katholieke Universiteit Leuven, 2001. Google Scholar |
[2] |
99 of Applied Mathematical Sciences. Springer-Verlag, New York, 1993. |
[3] |
Trans. Amer. Math. Soc., 334 (1992), 479-517.
doi: 10.2307/2154470. |
[4] |
IEEE J. of Quant. El., 16 (1980), 347-355. Google Scholar |
[5] |
SIAM J. Math. Anal., 43 (2011), 788-802.
doi: 10.1137/090766796. |
[6] |
388 of Lecture Notes in Control and Information Sciences. Springer, 2009.
doi: 10.1007/978-3-642-02897-7. |
[7] |
in " Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems" (eds. B Krauskopf, H M Osinga and J Galán-Vioque), Springer-Verlag, Dordrecht (2007), 51-75.
doi: 10.1007/978-1-4020-6356-5_12. |
[8] |
Numer. Algorithms, 30 (2002), 335-352.
doi: 10.1023/A:1020102317544. |
[9] |
Wiley, New York, 2 edition, 2008. |
[10] |
SIAM Journal on Applied Dynamical Systems, 10 (2011), 129-147. arXiv:1005.4522
doi: 10.1137/100796455. |
[11] |
J. Dynam. Diff. Eq., 18 (2006), 257-355.
doi: 10.1007/s10884-006-9006-5. |
[12] |
Longman Scientific and Technical, Harlow, Essex, 1989. |
[13] |
SIAM Journal on Scientific Computing, 28 (2006), 1301-1317.
doi: 10.1137/040618709. |
[14] |
Journal of Mathematical Analysis and Applications, 79 (1981), 127-140.
doi: 10.1016/0022-247X(81)90014-7. |
[15] |
Phys. Rev. Lett., 96 (2006), 220201.
doi: 10.1103/PhysRevLett.96.220201. |
[16] |
Physical Review E., 79 (2009), 46221.
doi: 10.1103/PhysRevE.79.046221. |
[17] |
SIAM J. Appl. Dyn. Sys., 9 (2010), 519-535.
doi: 10.1137/090751335. |
show all references
References:
[1] |
Report TW 330, Katholieke Universiteit Leuven, 2001. Google Scholar |
[2] |
99 of Applied Mathematical Sciences. Springer-Verlag, New York, 1993. |
[3] |
Trans. Amer. Math. Soc., 334 (1992), 479-517.
doi: 10.2307/2154470. |
[4] |
IEEE J. of Quant. El., 16 (1980), 347-355. Google Scholar |
[5] |
SIAM J. Math. Anal., 43 (2011), 788-802.
doi: 10.1137/090766796. |
[6] |
388 of Lecture Notes in Control and Information Sciences. Springer, 2009.
doi: 10.1007/978-3-642-02897-7. |
[7] |
in " Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems" (eds. B Krauskopf, H M Osinga and J Galán-Vioque), Springer-Verlag, Dordrecht (2007), 51-75.
doi: 10.1007/978-1-4020-6356-5_12. |
[8] |
Numer. Algorithms, 30 (2002), 335-352.
doi: 10.1023/A:1020102317544. |
[9] |
Wiley, New York, 2 edition, 2008. |
[10] |
SIAM Journal on Applied Dynamical Systems, 10 (2011), 129-147. arXiv:1005.4522
doi: 10.1137/100796455. |
[11] |
J. Dynam. Diff. Eq., 18 (2006), 257-355.
doi: 10.1007/s10884-006-9006-5. |
[12] |
Longman Scientific and Technical, Harlow, Essex, 1989. |
[13] |
SIAM Journal on Scientific Computing, 28 (2006), 1301-1317.
doi: 10.1137/040618709. |
[14] |
Journal of Mathematical Analysis and Applications, 79 (1981), 127-140.
doi: 10.1016/0022-247X(81)90014-7. |
[15] |
Phys. Rev. Lett., 96 (2006), 220201.
doi: 10.1103/PhysRevLett.96.220201. |
[16] |
Physical Review E., 79 (2009), 46221.
doi: 10.1103/PhysRevE.79.046221. |
[17] |
SIAM J. Appl. Dyn. Sys., 9 (2010), 519-535.
doi: 10.1137/090751335. |
[1] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[2] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021047 |
[3] |
Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080 |
[4] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[5] |
Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021103 |
[6] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[7] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[8] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[9] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[10] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[11] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021127 |
[12] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[13] |
Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021035 |
[14] |
Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064 |
[15] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034 |
[16] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 |
[17] |
Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053 |
[18] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[19] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[20] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]