July  2013, 33(7): 3109-3134. doi: 10.3934/dcds.2013.33.3109

On the stability of periodic orbits in delay equations with large delay

1. 

Harrison Building, North Park Road, CEMPS, University of Exeter, Exeter, EX4 4QF, United Kingdom

2. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

3. 

Institute of Mathematics, Humboldt University of Berlin, Rudower Chaussee 25, 12489, Berlin

Received  February 2012 Revised  December 2012 Published  January 2013

We prove a necessary and sufficient criterion for the exponential stability of periodic solutions of delay differential equations with large delay. We show that for sufficiently large delay the Floquet spectrum near criticality is characterized by a set of curves, which we call asymptotic continuous spectrum, that is independent on the delay.
Citation: Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109
References:
[1]

K. Engelborghs, T. Luzyanina and G. Samaey, "DDE-BIFTOOL v.2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations,", Report TW 330, (2001).   Google Scholar

[2]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", 99 of Applied Mathematical Sciences. Springer-Verlag, 99 (1993).   Google Scholar

[3]

M. A. Kaashoek and S. M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems,, Trans. Amer. Math. Soc., 334 (1992), 479.  doi: 10.2307/2154470.  Google Scholar

[4]

R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection properties,, IEEE J. of Quant. El., 16 (1980), 347.   Google Scholar

[5]

M. Lichtner, M. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay,, SIAM J. Math. Anal., 43 (2011), 788.  doi: 10.1137/090766796.  Google Scholar

[6]

J. J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi, "Topics in Time Delay Systems: Analysis, Algorithms and Control,", 388 of Lecture Notes in Control and Information Sciences. Springer, 388 (2009).  doi: 10.1007/978-3-642-02897-7.  Google Scholar

[7]

D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations,, in, (2007), 51.  doi: 10.1007/978-1-4020-6356-5_12.  Google Scholar

[8]

G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations,, Numer. Algorithms, 30 (2002), 335.  doi: 10.1023/A:1020102317544.  Google Scholar

[9]

E. Schöll and H. Schuster, "Handbook of Chaos Control,", Wiley, (2008).   Google Scholar

[10]

J. Sieber and R. Szalai, Characteristic matrices for linear periodic delay differential equations,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 129.  doi: 10.1137/100796455.  Google Scholar

[11]

A. L. Skubachevskii and H.-O. Walther, On the Floquet multipliers of periodic solutions to nonlinear functional differential equations,, J. Dynam. Diff. Eq., 18 (2006), 257.  doi: 10.1007/s10884-006-9006-5.  Google Scholar

[12]

G. Stépán, "Retarded Dynamical Systems: Stability and Characteristic Functions,", Longman Scientific and Technical, (1989).   Google Scholar

[13]

R. Szalai, G. Stépán and S. J. Hogan, Continuation of bifurcations in periodic delay differential equations using characteristic matrices,, SIAM Journal on Scientific Computing, 28 (2006), 1301.  doi: 10.1137/040618709.  Google Scholar

[14]

H.-O. Walther, Density of slowly oscillating solutions of $\dot x(t)=-f(x(t-1))$,, Journal of Mathematical Analysis and Applications, 79 (1981), 127.  doi: 10.1016/0022-247X(81)90014-7.  Google Scholar

[15]

M Wolfrum and S Yanchuk, Eckhaus instability in systems with large delay,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.220201.  Google Scholar

[16]

S Yanchuk and P Perlikowski, Delay and periodicity,, Physical Review E., 79 (2009).  doi: 10.1103/PhysRevE.79.046221.  Google Scholar

[17]

S Yanchuk and M Wolfrum, Stability of external cavity modes in the Lang-Kobayashi system with large delay,, SIAM J. Appl. Dyn. Sys., 9 (2010), 519.  doi: 10.1137/090751335.  Google Scholar

show all references

References:
[1]

K. Engelborghs, T. Luzyanina and G. Samaey, "DDE-BIFTOOL v.2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations,", Report TW 330, (2001).   Google Scholar

[2]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", 99 of Applied Mathematical Sciences. Springer-Verlag, 99 (1993).   Google Scholar

[3]

M. A. Kaashoek and S. M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems,, Trans. Amer. Math. Soc., 334 (1992), 479.  doi: 10.2307/2154470.  Google Scholar

[4]

R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection properties,, IEEE J. of Quant. El., 16 (1980), 347.   Google Scholar

[5]

M. Lichtner, M. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay,, SIAM J. Math. Anal., 43 (2011), 788.  doi: 10.1137/090766796.  Google Scholar

[6]

J. J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi, "Topics in Time Delay Systems: Analysis, Algorithms and Control,", 388 of Lecture Notes in Control and Information Sciences. Springer, 388 (2009).  doi: 10.1007/978-3-642-02897-7.  Google Scholar

[7]

D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations,, in, (2007), 51.  doi: 10.1007/978-1-4020-6356-5_12.  Google Scholar

[8]

G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations,, Numer. Algorithms, 30 (2002), 335.  doi: 10.1023/A:1020102317544.  Google Scholar

[9]

E. Schöll and H. Schuster, "Handbook of Chaos Control,", Wiley, (2008).   Google Scholar

[10]

J. Sieber and R. Szalai, Characteristic matrices for linear periodic delay differential equations,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 129.  doi: 10.1137/100796455.  Google Scholar

[11]

A. L. Skubachevskii and H.-O. Walther, On the Floquet multipliers of periodic solutions to nonlinear functional differential equations,, J. Dynam. Diff. Eq., 18 (2006), 257.  doi: 10.1007/s10884-006-9006-5.  Google Scholar

[12]

G. Stépán, "Retarded Dynamical Systems: Stability and Characteristic Functions,", Longman Scientific and Technical, (1989).   Google Scholar

[13]

R. Szalai, G. Stépán and S. J. Hogan, Continuation of bifurcations in periodic delay differential equations using characteristic matrices,, SIAM Journal on Scientific Computing, 28 (2006), 1301.  doi: 10.1137/040618709.  Google Scholar

[14]

H.-O. Walther, Density of slowly oscillating solutions of $\dot x(t)=-f(x(t-1))$,, Journal of Mathematical Analysis and Applications, 79 (1981), 127.  doi: 10.1016/0022-247X(81)90014-7.  Google Scholar

[15]

M Wolfrum and S Yanchuk, Eckhaus instability in systems with large delay,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.220201.  Google Scholar

[16]

S Yanchuk and P Perlikowski, Delay and periodicity,, Physical Review E., 79 (2009).  doi: 10.1103/PhysRevE.79.046221.  Google Scholar

[17]

S Yanchuk and M Wolfrum, Stability of external cavity modes in the Lang-Kobayashi system with large delay,, SIAM J. Appl. Dyn. Sys., 9 (2010), 519.  doi: 10.1137/090751335.  Google Scholar

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[3]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[4]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[5]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[6]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[7]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[11]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[12]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[13]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[14]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[15]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[16]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[19]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[20]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (18)

[Back to Top]