-
Previous Article
Entropy and exact Devaney chaos on totally regular continua
- DCDS Home
- This Issue
-
Next Article
Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems
On the stability of periodic orbits in delay equations with large delay
1. | Harrison Building, North Park Road, CEMPS, University of Exeter, Exeter, EX4 4QF, United Kingdom |
2. | Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany |
3. | Institute of Mathematics, Humboldt University of Berlin, Rudower Chaussee 25, 12489, Berlin |
References:
[1] |
K. Engelborghs, T. Luzyanina and G. Samaey, "DDE-BIFTOOL v.2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations,", Report TW 330, (2001). Google Scholar |
[2] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", 99 of Applied Mathematical Sciences. Springer-Verlag, 99 (1993).
|
[3] |
M. A. Kaashoek and S. M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems,, Trans. Amer. Math. Soc., 334 (1992), 479.
doi: 10.2307/2154470. |
[4] |
R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection properties,, IEEE J. of Quant. El., 16 (1980), 347. Google Scholar |
[5] |
M. Lichtner, M. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay,, SIAM J. Math. Anal., 43 (2011), 788.
doi: 10.1137/090766796. |
[6] |
J. J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi, "Topics in Time Delay Systems: Analysis, Algorithms and Control,", 388 of Lecture Notes in Control and Information Sciences. Springer, 388 (2009).
doi: 10.1007/978-3-642-02897-7. |
[7] |
D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations,, in, (2007), 51.
doi: 10.1007/978-1-4020-6356-5_12. |
[8] |
G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations,, Numer. Algorithms, 30 (2002), 335.
doi: 10.1023/A:1020102317544. |
[9] |
E. Schöll and H. Schuster, "Handbook of Chaos Control,", Wiley, (2008).
|
[10] |
J. Sieber and R. Szalai, Characteristic matrices for linear periodic delay differential equations,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 129.
doi: 10.1137/100796455. |
[11] |
A. L. Skubachevskii and H.-O. Walther, On the Floquet multipliers of periodic solutions to nonlinear functional differential equations,, J. Dynam. Diff. Eq., 18 (2006), 257.
doi: 10.1007/s10884-006-9006-5. |
[12] |
G. Stépán, "Retarded Dynamical Systems: Stability and Characteristic Functions,", Longman Scientific and Technical, (1989).
|
[13] |
R. Szalai, G. Stépán and S. J. Hogan, Continuation of bifurcations in periodic delay differential equations using characteristic matrices,, SIAM Journal on Scientific Computing, 28 (2006), 1301.
doi: 10.1137/040618709. |
[14] |
H.-O. Walther, Density of slowly oscillating solutions of $\dot x(t)=-f(x(t-1))$,, Journal of Mathematical Analysis and Applications, 79 (1981), 127.
doi: 10.1016/0022-247X(81)90014-7. |
[15] |
M Wolfrum and S Yanchuk, Eckhaus instability in systems with large delay,, Phys. Rev. Lett., 96 (2006).
doi: 10.1103/PhysRevLett.96.220201. |
[16] |
S Yanchuk and P Perlikowski, Delay and periodicity,, Physical Review E., 79 (2009).
doi: 10.1103/PhysRevE.79.046221. |
[17] |
S Yanchuk and M Wolfrum, Stability of external cavity modes in the Lang-Kobayashi system with large delay,, SIAM J. Appl. Dyn. Sys., 9 (2010), 519.
doi: 10.1137/090751335. |
show all references
References:
[1] |
K. Engelborghs, T. Luzyanina and G. Samaey, "DDE-BIFTOOL v.2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations,", Report TW 330, (2001). Google Scholar |
[2] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", 99 of Applied Mathematical Sciences. Springer-Verlag, 99 (1993).
|
[3] |
M. A. Kaashoek and S. M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems,, Trans. Amer. Math. Soc., 334 (1992), 479.
doi: 10.2307/2154470. |
[4] |
R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection properties,, IEEE J. of Quant. El., 16 (1980), 347. Google Scholar |
[5] |
M. Lichtner, M. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay,, SIAM J. Math. Anal., 43 (2011), 788.
doi: 10.1137/090766796. |
[6] |
J. J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi, "Topics in Time Delay Systems: Analysis, Algorithms and Control,", 388 of Lecture Notes in Control and Information Sciences. Springer, 388 (2009).
doi: 10.1007/978-3-642-02897-7. |
[7] |
D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations,, in, (2007), 51.
doi: 10.1007/978-1-4020-6356-5_12. |
[8] |
G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations,, Numer. Algorithms, 30 (2002), 335.
doi: 10.1023/A:1020102317544. |
[9] |
E. Schöll and H. Schuster, "Handbook of Chaos Control,", Wiley, (2008).
|
[10] |
J. Sieber and R. Szalai, Characteristic matrices for linear periodic delay differential equations,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 129.
doi: 10.1137/100796455. |
[11] |
A. L. Skubachevskii and H.-O. Walther, On the Floquet multipliers of periodic solutions to nonlinear functional differential equations,, J. Dynam. Diff. Eq., 18 (2006), 257.
doi: 10.1007/s10884-006-9006-5. |
[12] |
G. Stépán, "Retarded Dynamical Systems: Stability and Characteristic Functions,", Longman Scientific and Technical, (1989).
|
[13] |
R. Szalai, G. Stépán and S. J. Hogan, Continuation of bifurcations in periodic delay differential equations using characteristic matrices,, SIAM Journal on Scientific Computing, 28 (2006), 1301.
doi: 10.1137/040618709. |
[14] |
H.-O. Walther, Density of slowly oscillating solutions of $\dot x(t)=-f(x(t-1))$,, Journal of Mathematical Analysis and Applications, 79 (1981), 127.
doi: 10.1016/0022-247X(81)90014-7. |
[15] |
M Wolfrum and S Yanchuk, Eckhaus instability in systems with large delay,, Phys. Rev. Lett., 96 (2006).
doi: 10.1103/PhysRevLett.96.220201. |
[16] |
S Yanchuk and P Perlikowski, Delay and periodicity,, Physical Review E., 79 (2009).
doi: 10.1103/PhysRevE.79.046221. |
[17] |
S Yanchuk and M Wolfrum, Stability of external cavity modes in the Lang-Kobayashi system with large delay,, SIAM J. Appl. Dyn. Sys., 9 (2010), 519.
doi: 10.1137/090751335. |
[1] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[2] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[3] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[4] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[5] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[6] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[7] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[8] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[9] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[10] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[11] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[12] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[13] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[14] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[15] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
[16] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[17] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[18] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[19] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[20] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]