-
Previous Article
New constructions of optimal frequency hopping sequences with new parameters
- AMC Home
- This Issue
-
Next Article
On dealer-free dynamic threshold schemes
Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order
1. | Department of Mathematics and Statistics, Loyola University, Chicago, IL 60660, United States |
References:
[1] |
I. M. Araújo, et al., GAP reference manual,, The GAP Group, (). Google Scholar |
[2] |
in "Arithmetic of Finite Fields: First International Workshop'' (eds. C. Carlet and B. Sunar), Madrid, (2007), 276-283. |
[3] |
J. Combin. Des., 8 (2000), 174-188. |
[4] |
Des. Codes Crypt., 28 (2003), 163-169.
doi: 10.1023/A:1022588407585. |
[5] |
IEEE Trans. Inform. Theory, IT-56 (2010), 2091-2096. |
[6] |
Finite Fields Appl., 13 (2007), 605-615.
doi: 10.1016/j.ffa.2006.01.001. |
[7] |
Int. J. Inform. Coding Theory, 2 (2011), 21-37. |
[8] |
Des. Codes Crypt., 9 (1996), 131-141. |
[9] |
IEEE Trans. Inform. Theory, IT-44 (1998), 1369-1387. |
[10] |
Adv. Math. Commun., 3 (2009), 329-348. |
[11] |
IEEE Trans. Inform. Theory, IT-58 (2012), 5500-5511. |
[12] |
Des. Codes Crypt., 34 (2005), 89-116. |
[13] |
Finite Fields Appl., 9 (2003), 157-167.
doi: 10.1016/S1071-5797(02)00018-7. |
[14] |
Appl. Algebra Engrg. Comm. Comput., 14 (2003), 75-79.
doi: 10.1007/s00200-003-0126-4. |
[15] |
IEEE Trans. Inform. Theory, IT-28 (1982), 511-521. |
[16] |
IEEE Trans. Inform. Theory, IT-36 (1990), 651-660. |
[17] |
IEEE Trans. Inform. Theory, IT-37 (1991), 1206-1216. |
[18] |
IEEE Trans. Inform. Theory, IT-38 (1992), 1395-1400. |
[19] |
IEEE Trans. Inform. Theory, IT-44 (1998), 800-809. |
[20] |
Adv. Math. Commun., 1 (2007), 357-398. |
[21] |
Adv. Math. Commun., 1 (2007), 429-461. |
[22] |
Finite Fields Appl., 13 (2007), 681-712.
doi: 10.1016/j.ffa.2006.02.003. |
[23] |
Adv. Math. Commun., 2 (2008), 309-343. |
[24] |
Int. J. Inform. Coding Theory, 1 (2010), 249-284. |
[25] |
Des. Codes Crypt., 6 (1995), 97-106.
doi: 10.1007/BF01398008. |
[26] |
Finite Fields Appl., 7 (2001), 341-349.
doi: 10.1006/ffta.2000.0295. |
[27] |
Problems Inform. Trans., 19 (1983), 260-270. |
[28] |
Problems Inform. Trans., 22 (1986), 277-284. |
[29] |
Discrete Math., 308 (2008), 3115-3124. |
[30] |
IEEE Trans. Inform. Theory, IT-45 (1999), 1827-1832. |
[31] |
Finite Fields Appl., 8 (2002), 34-51.
doi: 10.1006/ffta.2001.0322. |
[32] |
IEEE Trans. Inform. Theory, IT-57 (2011), 7498-7506. |
[33] |
IEEE Trans. Inform. Theory, IT-33 (1987), 77-82. |
[34] |
Discrete Math., 190 (1998), 201-213. |
[35] |
Problems Inform. Trans., 32 (1996), 253-257. |
show all references
References:
[1] |
I. M. Araújo, et al., GAP reference manual,, The GAP Group, (). Google Scholar |
[2] |
in "Arithmetic of Finite Fields: First International Workshop'' (eds. C. Carlet and B. Sunar), Madrid, (2007), 276-283. |
[3] |
J. Combin. Des., 8 (2000), 174-188. |
[4] |
Des. Codes Crypt., 28 (2003), 163-169.
doi: 10.1023/A:1022588407585. |
[5] |
IEEE Trans. Inform. Theory, IT-56 (2010), 2091-2096. |
[6] |
Finite Fields Appl., 13 (2007), 605-615.
doi: 10.1016/j.ffa.2006.01.001. |
[7] |
Int. J. Inform. Coding Theory, 2 (2011), 21-37. |
[8] |
Des. Codes Crypt., 9 (1996), 131-141. |
[9] |
IEEE Trans. Inform. Theory, IT-44 (1998), 1369-1387. |
[10] |
Adv. Math. Commun., 3 (2009), 329-348. |
[11] |
IEEE Trans. Inform. Theory, IT-58 (2012), 5500-5511. |
[12] |
Des. Codes Crypt., 34 (2005), 89-116. |
[13] |
Finite Fields Appl., 9 (2003), 157-167.
doi: 10.1016/S1071-5797(02)00018-7. |
[14] |
Appl. Algebra Engrg. Comm. Comput., 14 (2003), 75-79.
doi: 10.1007/s00200-003-0126-4. |
[15] |
IEEE Trans. Inform. Theory, IT-28 (1982), 511-521. |
[16] |
IEEE Trans. Inform. Theory, IT-36 (1990), 651-660. |
[17] |
IEEE Trans. Inform. Theory, IT-37 (1991), 1206-1216. |
[18] |
IEEE Trans. Inform. Theory, IT-38 (1992), 1395-1400. |
[19] |
IEEE Trans. Inform. Theory, IT-44 (1998), 800-809. |
[20] |
Adv. Math. Commun., 1 (2007), 357-398. |
[21] |
Adv. Math. Commun., 1 (2007), 429-461. |
[22] |
Finite Fields Appl., 13 (2007), 681-712.
doi: 10.1016/j.ffa.2006.02.003. |
[23] |
Adv. Math. Commun., 2 (2008), 309-343. |
[24] |
Int. J. Inform. Coding Theory, 1 (2010), 249-284. |
[25] |
Des. Codes Crypt., 6 (1995), 97-106.
doi: 10.1007/BF01398008. |
[26] |
Finite Fields Appl., 7 (2001), 341-349.
doi: 10.1006/ffta.2000.0295. |
[27] |
Problems Inform. Trans., 19 (1983), 260-270. |
[28] |
Problems Inform. Trans., 22 (1986), 277-284. |
[29] |
Discrete Math., 308 (2008), 3115-3124. |
[30] |
IEEE Trans. Inform. Theory, IT-45 (1999), 1827-1832. |
[31] |
Finite Fields Appl., 8 (2002), 34-51.
doi: 10.1006/ffta.2001.0322. |
[32] |
IEEE Trans. Inform. Theory, IT-57 (2011), 7498-7506. |
[33] |
IEEE Trans. Inform. Theory, IT-33 (1987), 77-82. |
[34] |
Discrete Math., 190 (1998), 201-213. |
[35] |
Problems Inform. Trans., 32 (1996), 253-257. |
[1] |
Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077 |
[2] |
Antonio Cossidente, Sascha Kurz, Giuseppe Marino, Francesco Pavese. Combining subspace codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021007 |
[3] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[4] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[5] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[6] |
Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021003 |
[7] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[8] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[9] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[10] |
Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078 |
[11] |
Yun Gao, Shilin Yang, Fang-Wei Fu. Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes. Advances in Mathematics of Communications, 2021, 15 (3) : 387-396. doi: 10.3934/amc.2020072 |
[12] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[13] |
Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 |
[14] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[15] |
Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074 |
[16] |
Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075 |
[17] |
Jinsen Guo, Yongwu Zhou, Baixun Li. The optimal pricing and service strategies of a dual-channel retailer under free riding. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021056 |
[18] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001 |
[19] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[20] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]