# American Institute of Mathematical Sciences

November  2014, 13(6): 2395-2406. doi: 10.3934/cpaa.2014.13.2395

## Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation

 1 Departamento de Ingeneria Matematica F.C.F.M., Universidad de Chile, Casilla 170 Correro 3, Santiago 2 Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático UMR2071 CNRS-UChile, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile

Received  November 2013 Revised  March 2014 Published  July 2014

The aim of this paper is to study radial symmetry properties for ground state solutions of elliptic equations involving a regional fractional Laplacian, namely \begin{eqnarray} (-\Delta)_{\rho}^{\alpha}u + u = f(u) \quad \mbox{in} \ \mathbb{R}^{n}, \ \ \mbox{for} \ \ \alpha\in (0,1). \end{eqnarray} In [9], the authors proved that problem (1) has a ground state solution. In this work we prove that the ground state level is achieved by a radially symmetry solution. The proof is carried out by using variational methods jointly with rearrangement arguments.
Citation: Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395
##### References:
 [1] F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, \emph{J. Amer. Math. Soc.}, 2 (1989), 683. doi: 10.2307/1990893. Google Scholar [2] W. Beckner, Sobolev Inequalities, the Poisson Semigroup and analysis on the sphere $S^n$,, \emph{Proc. Natl. Acad. Sci.}, 89 (1992), 4816. doi: 10.1073/pnas.89.11.4816. Google Scholar [3] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar [4] R. Blumenthal and R. Getoor, Some theorems on stable processes,, \emph{Trans. Am. Math. Soc.}, 95 (1960), 263. Google Scholar [5] K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes,, \emph{Probab. Theory Relat. Fields}, 127 (2003), 89. doi: 10.1007/s00440-003-0275-1. Google Scholar [6] M. Cheng, ound state for the fractional Schrödinger equation with unbounded potential,, \emph{J. Math. Phys.}, 53 (2012). doi: 10.1063/1.3701574. Google Scholar [7] S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schroinger type problem involving the fractional Laplacian,, \emph{Le Matematiche}, LXVIII (2013), 201. Google Scholar [8] P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinguer equation with the fractional laplacian,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar [9] P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion,, Preprint., (). Google Scholar [10] Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Commun. Math. Phys.}, 266 (2006), 289. doi: 10.1007/s00220-006-0054-9. Google Scholar [11] H. Ishii and G. Nakamura, A class of integral equations and approximation of p-Laplace equations,, \emph{Calc. Var.}, 37 (2010), 485. doi: 10.1007/s00526-009-0274-x. Google Scholar [12] L. Jeanjean, On the existence of bounded Palais-Smale sequence and application to a Ladesman.Lazer-type problem set on $\mathbbR^n$,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 129 (1999), 787. doi: 10.1017/S0308210500013147. Google Scholar [13] B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lect. Notes Math., 1150 (1985). Google Scholar [14] S. Kesavan, Symmetrization and Applications,, World Scientific, (2006). Google Scholar [15] E. Lieb and M. Loss, Analysis,, Grad. Stud. Math., 14 (2001). Google Scholar [16] J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, 74 (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar [17] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [18] Y. Park, Fractional Polya-Zsego inequality,, \emph{J. Chungcheong Math. Soc.}, 24 (2011), 267. Google Scholar [19] P. Rabinowitz, On a class of nonlinear Schrödinguer equations,, \emph{ZAMP}, 43 (1992), 270. doi: 10.1007/BF00946631. Google Scholar [20] S. Secchi, Ground state solutions for nonlinear fractional Schroinger equations in $\mathbbR^n$,, \emph{J. Math. Phys.}, 54 (2013). doi: 10.1063/1.4793990. Google Scholar [21] S. Secchi, On fractional Schrödinger equation in $\mathbbR^n$ without the Ambrosetti-Rabinowitz condition,, to appear in \emph{Topological Methods in Nonlinear Analysis}., (). Google Scholar [22] B. Simon, Convexity: An Analytic Viewpoint,, Cambridge Tracts in Math. \textbf{187}, 187 (2011). doi: 10.1017/CBO9780511910135. Google Scholar [23] J. Van Schaftingen, Symmetrization and minimax principle,, \emph{Comm. Contemporary Math.}, 7 (2005), 463. doi: 10.1142/S0219199705001817. Google Scholar

show all references

##### References:
 [1] F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, \emph{J. Amer. Math. Soc.}, 2 (1989), 683. doi: 10.2307/1990893. Google Scholar [2] W. Beckner, Sobolev Inequalities, the Poisson Semigroup and analysis on the sphere $S^n$,, \emph{Proc. Natl. Acad. Sci.}, 89 (1992), 4816. doi: 10.1073/pnas.89.11.4816. Google Scholar [3] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, \emph{Arch. Rational Mech. Anal.}, 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar [4] R. Blumenthal and R. Getoor, Some theorems on stable processes,, \emph{Trans. Am. Math. Soc.}, 95 (1960), 263. Google Scholar [5] K. Bogdan, K. Burdzy and Z. Q. Chen, Censored stable processes,, \emph{Probab. Theory Relat. Fields}, 127 (2003), 89. doi: 10.1007/s00440-003-0275-1. Google Scholar [6] M. Cheng, ound state for the fractional Schrödinger equation with unbounded potential,, \emph{J. Math. Phys.}, 53 (2012). doi: 10.1063/1.3701574. Google Scholar [7] S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schroinger type problem involving the fractional Laplacian,, \emph{Le Matematiche}, LXVIII (2013), 201. Google Scholar [8] P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinguer equation with the fractional laplacian,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar [9] P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion,, Preprint., (). Google Scholar [10] Q. Y. Guan, Integration by parts formula for regional fractional Laplacian,, \emph{Commun. Math. Phys.}, 266 (2006), 289. doi: 10.1007/s00220-006-0054-9. Google Scholar [11] H. Ishii and G. Nakamura, A class of integral equations and approximation of p-Laplace equations,, \emph{Calc. Var.}, 37 (2010), 485. doi: 10.1007/s00526-009-0274-x. Google Scholar [12] L. Jeanjean, On the existence of bounded Palais-Smale sequence and application to a Ladesman.Lazer-type problem set on $\mathbbR^n$,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 129 (1999), 787. doi: 10.1017/S0308210500013147. Google Scholar [13] B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lect. Notes Math., 1150 (1985). Google Scholar [14] S. Kesavan, Symmetrization and Applications,, World Scientific, (2006). Google Scholar [15] E. Lieb and M. Loss, Analysis,, Grad. Stud. Math., 14 (2001). Google Scholar [16] J. Mawhin and M. Willen, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, 74 (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar [17] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [18] Y. Park, Fractional Polya-Zsego inequality,, \emph{J. Chungcheong Math. Soc.}, 24 (2011), 267. Google Scholar [19] P. Rabinowitz, On a class of nonlinear Schrödinguer equations,, \emph{ZAMP}, 43 (1992), 270. doi: 10.1007/BF00946631. Google Scholar [20] S. Secchi, Ground state solutions for nonlinear fractional Schroinger equations in $\mathbbR^n$,, \emph{J. Math. Phys.}, 54 (2013). doi: 10.1063/1.4793990. Google Scholar [21] S. Secchi, On fractional Schrödinger equation in $\mathbbR^n$ without the Ambrosetti-Rabinowitz condition,, to appear in \emph{Topological Methods in Nonlinear Analysis}., (). Google Scholar [22] B. Simon, Convexity: An Analytic Viewpoint,, Cambridge Tracts in Math. \textbf{187}, 187 (2011). doi: 10.1017/CBO9780511910135. Google Scholar [23] J. Van Schaftingen, Symmetrization and minimax principle,, \emph{Comm. Contemporary Math.}, 7 (2005), 463. doi: 10.1142/S0219199705001817. Google Scholar
 [1] Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071 [2] Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091 [3] Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499 [4] Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168 [5] Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597 [6] Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154 [7] Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 [8] Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 [9] Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188 [10] Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254 [11] Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125 [12] D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 [13] Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359 [14] Weiming Liu, Lu Gan. Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2016, 15 (2) : 413-428. doi: 10.3934/cpaa.2016.15.413 [15] Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 [16] Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 [17] Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323 [18] Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807 [19] Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 [20] Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

2018 Impact Factor: 0.925