August  2014, 8(3): 323-342. doi: 10.3934/amc.2014.8.323

How to obtain division algebras used for fast-decodable space-time block codes

1. 

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD

Received  July 2013 Revised  March 2014 Published  August 2014

We present families of unital algebras obtained through a doubling process from a cyclic central simple algebra $D=(K/F,\sigma,c)$, employing a $K$-automorphism $\tau$ and an element $d\in D^\times$. These algebras appear in the construction of iterated space-time block codes. We give conditions when these iterated algebras are division which can be used to construct fully diverse iterated codes. We also briefly look at algebras (and codes) obtained from variations of this method.
Citation: Susanne Pumplün. How to obtain division algebras used for fast-decodable space-time block codes. Advances in Mathematics of Communications, 2014, 8 (3) : 323-342. doi: 10.3934/amc.2014.8.323
References:
[1]

A. A. Albert, On the power-associativity of rings,, Summa Brazil. Math., 2 (1948), 21. Google Scholar

[2]

G. Berhuy and F. Oggier, Space-time codes from crossed product algebras of degree 4,, in AAECC 2007 (eds. S. Boztaş and H.F. Lu), (2007), 90. doi: 10.1007/978-3-540-77224-8_13. Google Scholar

[3]

G. Berhuy and F. Oggier, On the existence of perfect space-time codes,, IEEE Trans. Inf. Theory, 55 (2009), 2078. doi: 10.1109/TIT.2009.2016033. Google Scholar

[4]

G. Berhuy and F. Oggier, Introduction to Central Simple Algebras and their Applications to Wireless Communication,, AMS, (2013). Google Scholar

[5]

A. Deajim and D. Grant, Space-time codes and nonassociative division algebras over elliptic curves,, Contemp. Math., 463 (2008), 29. doi: 10.1090/conm/463/09044. Google Scholar

[6]

L. E. Dickson, Linear Algebras with associativity not assumed,, Duke Math. J., 1 (1935), 113. doi: 10.1215/S0012-7094-35-00112-0. Google Scholar

[7]

P. Elia, A. Sethuraman and P. V. Kumar, Perfect space-time codes with minimum and non-minimum delay for any number of antennas,, in International Conference on Wireless Networks, (2005), 722. Google Scholar

[8]

C. Hollanti, J. Lahtonen, K. Rauto and R. Vehkalahti, Optimal lattices for MIMO codes from division algebras,, IEEE International Symposium on Information Theory, (2006), 783. Google Scholar

[9]

T. Y. Lam, Quadratic Forms over Fields,, AMS, (2005). Google Scholar

[10]

N. Markin and F. Oggier, Iterated space-time code constructions from cyclic algebras,, IEEE Trans. Inf. Theory, 59 (2013), 5966. doi: 10.1109/TIT.2013.2266397. Google Scholar

[11]

F. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo, Perfect space-time block codes,, IEEE Trans. Inf. Theory, 32 (2006), 3885. doi: 10.1109/TIT.2006.880010. Google Scholar

[12]

S. Pumplün, Tensor products of central simple algebras and fast-decodable space-time block codes,, preprint, (). Google Scholar

[13]

S. Pumplün and V. Astier, Nonassociative quaternion algebras over rings,, Israel J. Math., 155 (2006), 125. doi: 10.1007/BF02773952. Google Scholar

[14]

S. Pumplün and T. Unger, Space-time block codes from nonassociative division algebras,, Adv. Math. Commun., 5 (2011), 609. doi: 10.3934/amc.2011.5.449. Google Scholar

[15]

R. D. Schafer, An introduction to nonassociative algebras,, Dover Publ. Inc., (1995). Google Scholar

[16]

B. A. Sethuraman, B. S. Rajan and V. Sashidhar, Full diversity, high rate space time block codes from division algebras,, IEEE Trans. Inf. Theory, 49 (2003), 2596. doi: 10.1109/TIT.2003.817831. Google Scholar

[17]

K. P. Srinath and B. S. Rajan, Fast decodable MIDO codes with large coding gain,, in 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), (2013), 2910. doi: 10.1109/TIT.2013.2292513. Google Scholar

[18]

A. Steele, Nonassociative cyclic algebras,, Israel J. Math., 200 (2014), 361. doi: 10.1007/s11856-014-0021-7. Google Scholar

[19]

A. Steele, S. Pumplün and F. Oggier, MIDO space-time codes from associative and non-associative cyclic algebras,, Information Theory Workshop, (2012), 192. Google Scholar

[20]

R. Vehkalahti, C. Hollanti and F. Oggier, Fast-decodable asymmetric space-time codes from division algebras,, IEEE Trans. Inf. Theory, 58 (2012), 2362. doi: 10.1109/TIT.2011.2176310. Google Scholar

[21]

W. C. Waterhouse, Nonassociative quaternion algebras,, Algebras Groups Geom., 4 (1987), 365. Google Scholar

show all references

References:
[1]

A. A. Albert, On the power-associativity of rings,, Summa Brazil. Math., 2 (1948), 21. Google Scholar

[2]

G. Berhuy and F. Oggier, Space-time codes from crossed product algebras of degree 4,, in AAECC 2007 (eds. S. Boztaş and H.F. Lu), (2007), 90. doi: 10.1007/978-3-540-77224-8_13. Google Scholar

[3]

G. Berhuy and F. Oggier, On the existence of perfect space-time codes,, IEEE Trans. Inf. Theory, 55 (2009), 2078. doi: 10.1109/TIT.2009.2016033. Google Scholar

[4]

G. Berhuy and F. Oggier, Introduction to Central Simple Algebras and their Applications to Wireless Communication,, AMS, (2013). Google Scholar

[5]

A. Deajim and D. Grant, Space-time codes and nonassociative division algebras over elliptic curves,, Contemp. Math., 463 (2008), 29. doi: 10.1090/conm/463/09044. Google Scholar

[6]

L. E. Dickson, Linear Algebras with associativity not assumed,, Duke Math. J., 1 (1935), 113. doi: 10.1215/S0012-7094-35-00112-0. Google Scholar

[7]

P. Elia, A. Sethuraman and P. V. Kumar, Perfect space-time codes with minimum and non-minimum delay for any number of antennas,, in International Conference on Wireless Networks, (2005), 722. Google Scholar

[8]

C. Hollanti, J. Lahtonen, K. Rauto and R. Vehkalahti, Optimal lattices for MIMO codes from division algebras,, IEEE International Symposium on Information Theory, (2006), 783. Google Scholar

[9]

T. Y. Lam, Quadratic Forms over Fields,, AMS, (2005). Google Scholar

[10]

N. Markin and F. Oggier, Iterated space-time code constructions from cyclic algebras,, IEEE Trans. Inf. Theory, 59 (2013), 5966. doi: 10.1109/TIT.2013.2266397. Google Scholar

[11]

F. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo, Perfect space-time block codes,, IEEE Trans. Inf. Theory, 32 (2006), 3885. doi: 10.1109/TIT.2006.880010. Google Scholar

[12]

S. Pumplün, Tensor products of central simple algebras and fast-decodable space-time block codes,, preprint, (). Google Scholar

[13]

S. Pumplün and V. Astier, Nonassociative quaternion algebras over rings,, Israel J. Math., 155 (2006), 125. doi: 10.1007/BF02773952. Google Scholar

[14]

S. Pumplün and T. Unger, Space-time block codes from nonassociative division algebras,, Adv. Math. Commun., 5 (2011), 609. doi: 10.3934/amc.2011.5.449. Google Scholar

[15]

R. D. Schafer, An introduction to nonassociative algebras,, Dover Publ. Inc., (1995). Google Scholar

[16]

B. A. Sethuraman, B. S. Rajan and V. Sashidhar, Full diversity, high rate space time block codes from division algebras,, IEEE Trans. Inf. Theory, 49 (2003), 2596. doi: 10.1109/TIT.2003.817831. Google Scholar

[17]

K. P. Srinath and B. S. Rajan, Fast decodable MIDO codes with large coding gain,, in 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), (2013), 2910. doi: 10.1109/TIT.2013.2292513. Google Scholar

[18]

A. Steele, Nonassociative cyclic algebras,, Israel J. Math., 200 (2014), 361. doi: 10.1007/s11856-014-0021-7. Google Scholar

[19]

A. Steele, S. Pumplün and F. Oggier, MIDO space-time codes from associative and non-associative cyclic algebras,, Information Theory Workshop, (2012), 192. Google Scholar

[20]

R. Vehkalahti, C. Hollanti and F. Oggier, Fast-decodable asymmetric space-time codes from division algebras,, IEEE Trans. Inf. Theory, 58 (2012), 2362. doi: 10.1109/TIT.2011.2176310. Google Scholar

[21]

W. C. Waterhouse, Nonassociative quaternion algebras,, Algebras Groups Geom., 4 (1987), 365. Google Scholar

[1]

Susanne Pumplün, Andrew Steele. The nonassociative algebras used to build fast-decodable space-time block codes. Advances in Mathematics of Communications, 2015, 9 (4) : 449-469. doi: 10.3934/amc.2015.9.449

[2]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[3]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[4]

Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255

[5]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[6]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[7]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[8]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[9]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[10]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[11]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[12]

Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599

[13]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[14]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[15]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[16]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[17]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[18]

Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032

[19]

M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407

[20]

Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]