• Previous Article
    How to obtain division algebras used for fast-decodable space-time block codes
  • AMC Home
  • This Issue
  • Next Article
    Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions
2014, 8(3): 343-358. doi: 10.3934/amc.2014.8.343

A general construction for monoid-based knapsack protocols

1. 

Institut für Mathematik, Winterthurerstrasse 190, Zürich, CH8057, Switzerland, Switzerland

Received  November 2013 Revised  February 2014 Published  August 2014

We present a generalized version of the knapsack protocol proposed by D. Naccache and J. Stern at the Proceedings of Eurocrypt (1997). Our new framework will allow the construction of other knapsack protocols having similar security features. We will outline a very concrete example of a new protocol using extension fields of a finite field of small characteristic instead of the prime field $\mathbb{Z}/p\mathbb{Z}$, but more efficient in terms of computational costs for asymptotically equal information rate and similar key size.
Citation: Giacomo Micheli, Michele Schiavina. A general construction for monoid-based knapsack protocols. Advances in Mathematics of Communications, 2014, 8 (3) : 343-358. doi: 10.3934/amc.2014.8.343
References:
[1]

B. Chevallier-Mames, D. Naccache and J. Stern, Linear bandwidth Naccache-Stern encryption,, in Security and Cryptography for Networks, (2008), 337. doi: 10.1007/978-3-540-85855-3_22.

[2]

W. Diffie and M. Hellman, New directions in cryptography,, IEEE Trans. Inf. Theory, 22 (1976), 644.

[3]

T. ElGamal, A public-key cryptosystem and a signature scheme based on discrete logarithms,, IEEE Trans. Inf. Theory, 31 (1985), 469. doi: 10.1109/TIT.1985.1057074.

[4]

P. Erdös, Ramanujan and I,, Resonance, 3 (1998), 81.

[5]

M. E. Hellman, An overview of public key cryptography,, IEEE Commun. Soc. M., 16 (1978), 24. doi: 10.1109/MCOM.1978.1089772.

[6]

J. Hoffstein, J. Pipher and J. H. Silverman, A ring based public key cryptosystem,, in Algorithmic Number Theory (ANTS III), (1998), 267. doi: 10.1007/BFb0054868.

[7]

S. Kiuchi, Y. Murakami and M. Kasahara, High rate mulitiplicative knapsack cryptosystem (in Japanese),, IEICE Tech. Report, ISEC98-26 (1998), 98.

[8]

S. Kiuchi, Y. Murakami and M. Kasahara, New mulitiplicative knapsack-type public key cryptosystems,, IEICE Trans., E84-A (2001), 188.

[9]

G. Maze, C. Monico and J. Rosenthal, Public key cryptography based on semigroup actions,, Adv. Math. Commun., 1 (2007), 489. doi: 10.3934/amc.2007.1.489.

[10]

R. J. McEliece, A public-key cryptosystem based on algebraic coding theory,, DSN Progress Report, 114 (1978), 42.

[11]

M. Morii and M. Kasahara, New public key cryptosystem using discrete logarithms over GF(P) (in Japanese),, IEICE Trans., J71-D (1988), 448.

[12]

D. Naccache and J. Stern, New public key cryptosystem,, in Proceedings of Eurocrypt 97, (1997), 27. doi: 10.1007/3-540-69053-0_3.

[13]

T. Okamoto, K. Tamaka and S. Uchiyama, Quantum public key cryptosystem,, in Advances in cryptology - CRYPTO 2000, (2000), 147. doi: 10.1007/3-540-44598-6_9.

[14]

J. Patarin, Hidden field equations HFE and isomorphisms of polynomials IP: two new families of asymmetric algorithms,, in Advances in Cryptology - EUROCRYPT '96, (1996), 33.

[15]

R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,, Commun. ACM, 21 (1978), 120. doi: 10.1145/359340.359342.

[16]

M. Rosen, Number Theory in Function Fields,, Springer, (2002). doi: 10.1007/978-1-4757-6046-0.

[17]

A. Salomaa, Public Key Cryptography,, Springer-Verlag, (1990). doi: 10.1007/978-3-662-02627-4.

[18]

V. Shoup, New algorithms for finding irreducible polynomials over finite fields,, Math. Comput., 54 (1990), 435. doi: 10.2307/2008704.

show all references

References:
[1]

B. Chevallier-Mames, D. Naccache and J. Stern, Linear bandwidth Naccache-Stern encryption,, in Security and Cryptography for Networks, (2008), 337. doi: 10.1007/978-3-540-85855-3_22.

[2]

W. Diffie and M. Hellman, New directions in cryptography,, IEEE Trans. Inf. Theory, 22 (1976), 644.

[3]

T. ElGamal, A public-key cryptosystem and a signature scheme based on discrete logarithms,, IEEE Trans. Inf. Theory, 31 (1985), 469. doi: 10.1109/TIT.1985.1057074.

[4]

P. Erdös, Ramanujan and I,, Resonance, 3 (1998), 81.

[5]

M. E. Hellman, An overview of public key cryptography,, IEEE Commun. Soc. M., 16 (1978), 24. doi: 10.1109/MCOM.1978.1089772.

[6]

J. Hoffstein, J. Pipher and J. H. Silverman, A ring based public key cryptosystem,, in Algorithmic Number Theory (ANTS III), (1998), 267. doi: 10.1007/BFb0054868.

[7]

S. Kiuchi, Y. Murakami and M. Kasahara, High rate mulitiplicative knapsack cryptosystem (in Japanese),, IEICE Tech. Report, ISEC98-26 (1998), 98.

[8]

S. Kiuchi, Y. Murakami and M. Kasahara, New mulitiplicative knapsack-type public key cryptosystems,, IEICE Trans., E84-A (2001), 188.

[9]

G. Maze, C. Monico and J. Rosenthal, Public key cryptography based on semigroup actions,, Adv. Math. Commun., 1 (2007), 489. doi: 10.3934/amc.2007.1.489.

[10]

R. J. McEliece, A public-key cryptosystem based on algebraic coding theory,, DSN Progress Report, 114 (1978), 42.

[11]

M. Morii and M. Kasahara, New public key cryptosystem using discrete logarithms over GF(P) (in Japanese),, IEICE Trans., J71-D (1988), 448.

[12]

D. Naccache and J. Stern, New public key cryptosystem,, in Proceedings of Eurocrypt 97, (1997), 27. doi: 10.1007/3-540-69053-0_3.

[13]

T. Okamoto, K. Tamaka and S. Uchiyama, Quantum public key cryptosystem,, in Advances in cryptology - CRYPTO 2000, (2000), 147. doi: 10.1007/3-540-44598-6_9.

[14]

J. Patarin, Hidden field equations HFE and isomorphisms of polynomials IP: two new families of asymmetric algorithms,, in Advances in Cryptology - EUROCRYPT '96, (1996), 33.

[15]

R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,, Commun. ACM, 21 (1978), 120. doi: 10.1145/359340.359342.

[16]

M. Rosen, Number Theory in Function Fields,, Springer, (2002). doi: 10.1007/978-1-4757-6046-0.

[17]

A. Salomaa, Public Key Cryptography,, Springer-Verlag, (1990). doi: 10.1007/978-3-662-02627-4.

[18]

V. Shoup, New algorithms for finding irreducible polynomials over finite fields,, Math. Comput., 54 (1990), 435. doi: 10.2307/2008704.

[1]

Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046

[2]

Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459

[3]

Giacomo Micheli. Cryptanalysis of a noncommutative key exchange protocol. Advances in Mathematics of Communications, 2015, 9 (2) : 247-253. doi: 10.3934/amc.2015.9.247

[4]

Stefania Fanali, Massimo Giulietti, Irene Platoni. On maximal curves over finite fields of small order. Advances in Mathematics of Communications, 2012, 6 (1) : 107-120. doi: 10.3934/amc.2012.6.107

[5]

Shengtian Yang, Thomas Honold. Good random matrices over finite fields. Advances in Mathematics of Communications, 2012, 6 (2) : 203-227. doi: 10.3934/amc.2012.6.203

[6]

Francis N. Castro, Carlos Corrada-Bravo, Natalia Pacheco-Tallaj, Ivelisse Rubio. Explicit formulas for monomial involutions over finite fields. Advances in Mathematics of Communications, 2017, 11 (2) : 301-306. doi: 10.3934/amc.2017022

[7]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[8]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[9]

Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023

[10]

Joseph H. Silverman. Local-global aspects of (hyper)elliptic curves over (in)finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 101-114. doi: 10.3934/amc.2010.4.101

[11]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[12]

Uwe Helmke, Jens Jordan, Julia Lieb. Probability estimates for reachability of linear systems defined over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 63-78. doi: 10.3934/amc.2016.10.63

[13]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[14]

Amin Sakzad, Mohammad-Reza Sadeghi, Daniel Panario. Cycle structure of permutation functions over finite fields and their applications. Advances in Mathematics of Communications, 2012, 6 (3) : 347-361. doi: 10.3934/amc.2012.6.347

[15]

Fatma-Zohra Benahmed, Kenza Guenda, Aicha Batoul, Thomas Aaron Gulliver. Some new constructions of isodual and LCD codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 281-296. doi: 10.3934/amc.2019019

[16]

Mohammad Sadeq Dousti, Rasool Jalili. FORSAKES: A forward-secure authenticated key exchange protocol based on symmetric key-evolving schemes. Advances in Mathematics of Communications, 2015, 9 (4) : 471-514. doi: 10.3934/amc.2015.9.471

[17]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[18]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[19]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[20]

Marko Budišić, Stefan Siegmund, Doan Thai Son, Igor Mezić. Mesochronic classification of trajectories in incompressible 3D vector fields over finite times. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 923-958. doi: 10.3934/dcdss.2016035

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]