January  2015, 35(1): 225-246. doi: 10.3934/dcds.2015.35.225

Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation

1. 

Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States

2. 

Mathematics Department, University of North Carolina, Phillips Hall, CB#3250, Chapel Hill, NC 27599, United States

3. 

Department of Applied Physics and Applied Mathematics, Department of Mathematics, Columbia University, New York City, NY 10024, United States

Received  November 2013 Revised  April 2014 Published  August 2014

We study the long-time behavior of solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation (NLS/GP) with a symmetric double-well potential. NLS/GP governs nearly-monochromatic guided optical beams in weakly coupled waveguides with both linear and nonlinear (Kerr) refractive indices and zero absorption, as well as the behavior of Bose-Einstein condensates. For small $L^2$ norm (low power), the solution executes beating oscillations between the two wells. There is a power threshold at which a symmetry breaking bifurcation occurs. The set of guided mode solutions splits into two families of solutions. One type of solution is concentrated in either well of the potential, but not both. Solutions in the second family undergo tunneling oscillations between the two wells. A finite dimensional reduction (system of ODEs) derived in [17] is expected to well-approximate the PDE dynamics on long time scales. In particular, we revisit this reduction, find a class of exact solutions and shadow them in the (NLS/GP) system by applying the approach of [17].
Citation: Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225
References:
[1]

M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction,, Phys. Rev. Lett., 95 (2005). doi: 10.1103/PhysRevLett.95.010402.

[2]

R. W. Boyd, Nonlinear Optics,, 3rd edition, (2008).

[3]

P. Byrd and M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists,, 2nd edition, (1971).

[4]

X. Chen, Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps,, J. Math. Pures Appl., 98 (2012), 450. doi: 10.1016/j.matpur.2012.02.003.

[5]

X. Chen, On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic trap,, Arch. Ration. Mech. Anal., 210 (2013), 365. doi: 10.1007/s00205-013-0645-5.

[6]

X. Chen and J. Holmer, Focusing quantum many-body dynamics: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation,, preprint, (2013).

[7]

L. Erdős, B. Schlein and H.-T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems,, Inventiones mathematicae, 167 (2007), 515. doi: 10.1007/s00222-006-0022-1.

[8]

A. Giorgilli and L. Galgani, Rigorous estimates for the series expansions of Hamiltonian perturbation theory,, Celest. Mech. Dyn. Astr., 37 (1985), 95. doi: 10.1007/BF01230921.

[9]

R. H. Goodman, Hamiltonian Hopf bifurcations and dynamics of NLS/GP standing-wave modes,, J. Phys. A: Math. Theor., 44 (2011). doi: 10.1088/1751-8113/44/42/425101.

[10]

R. H. Goodman, Bifurcations of relative periodic orbits in a reduction of the nonlinear Schrödinger equation with a multiple-well potential,, in preparation, (2014).

[11]

I. S. Gradshteyn and I. M Ryzhik, Table of Integrals, Series, and Products,, 7th edition, (2007).

[12]

E. Harrell, Double wells,, Comm. Math. Phys., 75 (1980), 239. doi: 10.1007/BF01212711.

[13]

T. Kapitula, P. G. Kevrekidis and Z. Chen, Three is a crowd: Solitary waves in photorefractive media with three potential wells,, SIAM J. Appl. Dyn. Syst., 5 (2006), 598. doi: 10.1137/05064076X.

[14]

E.-W. Kirr, P. G. Kevrekidis and D. E. Pelinovsky, Symmetry breaking bifurcation in nonlinear Schrödinger equation with symmetric potentials,, Comm. Math. Phys., 308 (2011), 795. doi: 10.1007/s00220-011-1361-3.

[15]

E.-W. Kirr, P. G. Kevrekidis, E. Shlizerman and M. I. Weinstein, Symmetry breaking bifurcation in nonlinear Schrödinger/Gross-Pitaevskii equations,, SIAM J. Math. Anal., 40 (2008), 566. doi: 10.1137/060678427.

[16]

G. Kovačič and S. Wiggins, Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation,, Phys. D, 57 (1992), 185. doi: 10.1016/0167-2789(92)90092-2.

[17]

J. L. Marzuola and M. I. Weinstein, Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations,, DCDS-A, 28 (2010), 1505. doi: 10.3934/dcds.2010.28.1505.

[18]

K. Meyer, G. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,, Applied Mathematical Sciences, (2010).

[19]

K. R. Meyer, Jacobi elliptic functions from a dynamical systems point of view,, Am. Math. Mon., 108 (2001), 729. doi: 10.2307/2695616.

[20]

N. N. Nekhoroshev, Behavior of Hamiltonian systems close to integrable,, Funct. Anal. Appl., 5 (1971), 338. doi: 10.1007/BF01086753.

[21]

A. C. Newell and J. V. Moloney, Nonlinear Optics,, Advanced Book Program, (2003). doi: 10.1007/978-94-009-0591-7_4.

[22]

NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/,, Release 1.0.5 of 2012-10-01., (): 2012.

[23]

D. Pelinovsky and T. Phan, Normal form for the symmetry-breaking bifurcation in the nonlinear Schrödinger equation,, J. Diff. Eq., 253 (2012), 2796. doi: 10.1016/j.jde.2012.07.007.

[24]

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation,, International Series of Monographs on Physics, (2003).

[25]

E. Shlizerman and V. Rom-Kedar, Hierarchy of bifurcations in the truncated and forced nonlinear Schrödinger model,, Chaos, 15 (2005). doi: 10.1063/1.1831591.

[26]

G. Theocharis, P. G. Kevrekidis, D. J. Frantzeskakis and P. Schmelcher, Symmetry breaking in symmetric and asymmetric double-well potentials,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.056608.

[27]

J. Yang, Classification of solitary wave bifurcations in generalized nonlinear media,, Stud. Appl. Math., 129 (2012), 133. doi: 10.1111/j.1467-9590.2012.00549.x.

[28]

J. Yang, Stability analysis for pitchfork bifurcations of solitary waves in generalized nonlinear Schrödinger equations,, Phys. D., 244 (2012), 50. doi: 10.1016/j.physd.2012.10.006.

show all references

References:
[1]

M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction,, Phys. Rev. Lett., 95 (2005). doi: 10.1103/PhysRevLett.95.010402.

[2]

R. W. Boyd, Nonlinear Optics,, 3rd edition, (2008).

[3]

P. Byrd and M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists,, 2nd edition, (1971).

[4]

X. Chen, Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps,, J. Math. Pures Appl., 98 (2012), 450. doi: 10.1016/j.matpur.2012.02.003.

[5]

X. Chen, On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic trap,, Arch. Ration. Mech. Anal., 210 (2013), 365. doi: 10.1007/s00205-013-0645-5.

[6]

X. Chen and J. Holmer, Focusing quantum many-body dynamics: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation,, preprint, (2013).

[7]

L. Erdős, B. Schlein and H.-T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems,, Inventiones mathematicae, 167 (2007), 515. doi: 10.1007/s00222-006-0022-1.

[8]

A. Giorgilli and L. Galgani, Rigorous estimates for the series expansions of Hamiltonian perturbation theory,, Celest. Mech. Dyn. Astr., 37 (1985), 95. doi: 10.1007/BF01230921.

[9]

R. H. Goodman, Hamiltonian Hopf bifurcations and dynamics of NLS/GP standing-wave modes,, J. Phys. A: Math. Theor., 44 (2011). doi: 10.1088/1751-8113/44/42/425101.

[10]

R. H. Goodman, Bifurcations of relative periodic orbits in a reduction of the nonlinear Schrödinger equation with a multiple-well potential,, in preparation, (2014).

[11]

I. S. Gradshteyn and I. M Ryzhik, Table of Integrals, Series, and Products,, 7th edition, (2007).

[12]

E. Harrell, Double wells,, Comm. Math. Phys., 75 (1980), 239. doi: 10.1007/BF01212711.

[13]

T. Kapitula, P. G. Kevrekidis and Z. Chen, Three is a crowd: Solitary waves in photorefractive media with three potential wells,, SIAM J. Appl. Dyn. Syst., 5 (2006), 598. doi: 10.1137/05064076X.

[14]

E.-W. Kirr, P. G. Kevrekidis and D. E. Pelinovsky, Symmetry breaking bifurcation in nonlinear Schrödinger equation with symmetric potentials,, Comm. Math. Phys., 308 (2011), 795. doi: 10.1007/s00220-011-1361-3.

[15]

E.-W. Kirr, P. G. Kevrekidis, E. Shlizerman and M. I. Weinstein, Symmetry breaking bifurcation in nonlinear Schrödinger/Gross-Pitaevskii equations,, SIAM J. Math. Anal., 40 (2008), 566. doi: 10.1137/060678427.

[16]

G. Kovačič and S. Wiggins, Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation,, Phys. D, 57 (1992), 185. doi: 10.1016/0167-2789(92)90092-2.

[17]

J. L. Marzuola and M. I. Weinstein, Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations,, DCDS-A, 28 (2010), 1505. doi: 10.3934/dcds.2010.28.1505.

[18]

K. Meyer, G. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,, Applied Mathematical Sciences, (2010).

[19]

K. R. Meyer, Jacobi elliptic functions from a dynamical systems point of view,, Am. Math. Mon., 108 (2001), 729. doi: 10.2307/2695616.

[20]

N. N. Nekhoroshev, Behavior of Hamiltonian systems close to integrable,, Funct. Anal. Appl., 5 (1971), 338. doi: 10.1007/BF01086753.

[21]

A. C. Newell and J. V. Moloney, Nonlinear Optics,, Advanced Book Program, (2003). doi: 10.1007/978-94-009-0591-7_4.

[22]

NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/,, Release 1.0.5 of 2012-10-01., (): 2012.

[23]

D. Pelinovsky and T. Phan, Normal form for the symmetry-breaking bifurcation in the nonlinear Schrödinger equation,, J. Diff. Eq., 253 (2012), 2796. doi: 10.1016/j.jde.2012.07.007.

[24]

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation,, International Series of Monographs on Physics, (2003).

[25]

E. Shlizerman and V. Rom-Kedar, Hierarchy of bifurcations in the truncated and forced nonlinear Schrödinger model,, Chaos, 15 (2005). doi: 10.1063/1.1831591.

[26]

G. Theocharis, P. G. Kevrekidis, D. J. Frantzeskakis and P. Schmelcher, Symmetry breaking in symmetric and asymmetric double-well potentials,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.056608.

[27]

J. Yang, Classification of solitary wave bifurcations in generalized nonlinear media,, Stud. Appl. Math., 129 (2012), 133. doi: 10.1111/j.1467-9590.2012.00549.x.

[28]

J. Yang, Stability analysis for pitchfork bifurcations of solitary waves in generalized nonlinear Schrödinger equations,, Phys. D., 244 (2012), 50. doi: 10.1016/j.physd.2012.10.006.

[1]

Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637

[2]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[3]

Sandra Lucente, Eugenio Montefusco. Non-hamiltonian Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 761-770. doi: 10.3934/dcdss.2013.6.761

[4]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[5]

Hartmut Schwetlick, Daniel C. Sutton, Johannes Zimmer. Effective Hamiltonian dynamics via the Maupertuis principle. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-16. doi: 10.3934/dcdss.2020078

[6]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[7]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[8]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[9]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[10]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[11]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[12]

Partha Guha, Indranil Mukherjee. Hierarchies and Hamiltonian structures of the Nonlinear Schrödinger family using geometric and spectral techniques. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1677-1695. doi: 10.3934/dcdsb.2018287

[13]

David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327

[14]

Alessio Pomponio, Simone Secchi. A note on coupled nonlinear Schrödinger systems under the effect of general nonlinearities. Communications on Pure & Applied Analysis, 2010, 9 (3) : 741-750. doi: 10.3934/cpaa.2010.9.741

[15]

Jing Yang. Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1785-1805. doi: 10.3934/cpaa.2017087

[16]

Jiabao Su, Rushun Tian, Zhi-Qiang Wang. Positive solutions of doubly coupled multicomponent nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2143-2161. doi: 10.3934/dcdss.2019138

[17]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[18]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[19]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[20]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

[Back to Top]