2014, 19(9): 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

On optimal control of a sweeping process coupled with an ordinary differential equation

1. 

ÚTIA, Czech Academy of Sciences, Pod Vodárenskou věží 4, Prague 8, Czech Republic, Czech Republic

Received  June 2013 Revised  March 2014 Published  September 2014

We study a special case of an optimal control problem governed by a differential equation and a differential rate--independent variational inequality, both with given initial conditions. Under certain conditions, the variational inequality can be reformulated as a differential inclusion with discontinuous right-hand side. This inclusion is known as sweeping process.
    We perform a discretization scheme and prove the convergence of optimal solutions of the discretized problems to the optimal solution of the original problem. For the discretized problems we study the properties of the solution map and compute its coderivative. Employing an appropriate chain rule, this enables us to compute the subdifferential of the objective function and to apply a suitable optimization technique to solve the discretized problems. The investigated problem is used to model a situation arising in the area of queuing theory.
Citation: Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709
References:
[1]

A. Bergqvist, Magnetic vector hysteresis model with dry friction-like pinning,, Physica B: Condensed Matter, 233 (1997), 342. doi: 10.1016/S0921-4526(97)00319-0.

[2]

J. F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. A. Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects,, Springer-Verlag, (2006).

[3]

K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations,, SIAM Publications Classics in Applied Mathematics, (1996).

[4]

M. Brokate, Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ,, Peter Lang GmbH, (1987).

[5]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8.

[6]

M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality,, Discrete and Continuous Dynamical Systems - Series B, 18 (2013), 331. doi: 10.3934/dcdsb.2013.18.331.

[7]

H. S. Chung, R. D. Weaver and T. L. Friesz, Oligopolies in pollution permit markets: A dynamic game approach,, International Journal of Production Economics, 140 (2012), 48. doi: 10.1016/j.ijpe.2012.01.017.

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983).

[9]

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).

[10]

G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process,, Dynamics of Continuous, 19 (2012), 117.

[11]

B. Dacorogna, Direct methods in the calculus of variations,, vol. 78, (2008).

[12]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in finite elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165.

[13]

T. Donchev, E. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces,, Journal of Differential Equations, 243 (2007), 301. doi: 10.1016/j.jde.2007.05.011.

[14]

A. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for variational inequalities over polyhedral convex sets,, SIAM Journal on Optimization, 6 (1996), 1087. doi: 10.1137/S1052623495284029.

[15]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process,, Mathematical Programming, 104 (2005), 347. doi: 10.1007/s10107-005-0619-y.

[16]

E. Emmrich, Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems,, Preprint series of the Institute of Mathematics, 637 ().

[17]

A. D. Ioffe and J. Outrata, On metric and calmness qualification conditions in subdifferential calculus,, Set-Valued Analysis, 16 (2008), 199. doi: 10.1007/s11228-008-0076-x.

[18]

M. Kočvara, M. Kružík and J. Outrata, On the control of an evolutionary equilibrium in micromagnetics,, in Optimization with Multivalued Mappings, 2 (2006), 143. doi: 10.1007/0-387-34221-4_8.

[19]

P. Krejčí and J. Sprekels, Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity,, Appl. Math, 43 (1998), 173. doi: 10.1023/A:1023224507448.

[20]

P. Krejčí and A. Vladimirov, Lipschitz continuity of polyhedral Skorokhod maps,, Zeitschrift für Analysis und Ihre Anwendungen, 20 (2000), 817. doi: 10.4171/ZAA/1047.

[21]

P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators,, in Nonlinear differential equations, (1999), 47.

[22]

A. S. Lewis and M. L. Overton, Nonsmooth optimization via quasi-Newton methods,, Mathematical Programming, (): 1. doi: 10.1007/s10107-012-0514-2.

[23]

S. Lu and S. Robinson, Normal fans of polyhedral convex sets,, Set-Valued Analysis, 16 (2008), 281. doi: 10.1007/s11228-008-0077-9.

[24]

Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints,, Cambridge University Press, (1996). doi: 10.1017/CBO9780511983658.

[25]

B. Maury and J. Venel, A discrete contact model for crowd motion,, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 145. doi: 10.1051/m2an/2010035.

[26]

Y. Moon, T. Yao and T. L. Friesz, Dynamic pricing and inventory policies: A strategic analysis of dual channel supply chain design,, Service Science, 2 (2010), 196. doi: 10.1287/serv.2.3.196.

[27]

B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings,, Journal of Mathematical Analysis and Applications, 183 (1994), 250. doi: 10.1006/jmaa.1994.1144.

[28]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I, II,, Springer, (2006).

[29]

J. J. Moreau, On unilateral constraints, friction and plasticity,, in New Variational Techniques in Mathematical Physics, (1974), 171.

[30]

J. Outrata, M. Kočvara and J. Zowe, Nonsmooth approach to Optimization Problems with Equilibrium Constraints,, Kluwer Academic Publishers, (1998). doi: 10.1007/978-1-4757-2825-5.

[31]

J.-S. Pang and D. E. Stewart, Differential variational inequalities,, Mathematical Programming, 113 (2008), 345. doi: 10.1007/s10107-006-0052-x.

[32]

R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions,, Ann. Inst. Henri Poincaré, 2 (1985), 167.

[33]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis,, Springer, (1998). doi: 10.1007/978-3-642-02431-3.

[34]

H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results,, SIAM Journal on Optimization, 2 (1992), 121. doi: 10.1137/0802008.

[35]

A. Skajaa, Limited Memory BFGS for Nonsmooth Optimization,, Master thesis, (2010).

[36]

A. Tasora, M. Anitescu, S. Negrini and D. Negrut, A compliant visco-plastic particle contact model based on differential variational inequalities,, International Journal of Non-Linear Mechanics, 53 (2013), 2. doi: 10.1016/j.ijnonlinmec.2013.01.010.

[37]

L. Thibault, Sweeping process with regular and nonregular sets,, Journal of Differential Equations, 193 (2003), 1. doi: 10.1016/S0022-0396(03)00129-3.

[38]

J. Venel, A numerical scheme for a class of sweeping processes,, Numerische Mathematik, 118 (2011), 367. doi: 10.1007/s00211-010-0329-0.

[39]

A. Visintin, Differential Models of Hysteresis,, Springer, (1994). doi: 10.1007/978-3-662-11557-2.

show all references

References:
[1]

A. Bergqvist, Magnetic vector hysteresis model with dry friction-like pinning,, Physica B: Condensed Matter, 233 (1997), 342. doi: 10.1016/S0921-4526(97)00319-0.

[2]

J. F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. A. Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects,, Springer-Verlag, (2006).

[3]

K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations,, SIAM Publications Classics in Applied Mathematics, (1996).

[4]

M. Brokate, Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ,, Peter Lang GmbH, (1987).

[5]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8.

[6]

M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality,, Discrete and Continuous Dynamical Systems - Series B, 18 (2013), 331. doi: 10.3934/dcdsb.2013.18.331.

[7]

H. S. Chung, R. D. Weaver and T. L. Friesz, Oligopolies in pollution permit markets: A dynamic game approach,, International Journal of Production Economics, 140 (2012), 48. doi: 10.1016/j.ijpe.2012.01.017.

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983).

[9]

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).

[10]

G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process,, Dynamics of Continuous, 19 (2012), 117.

[11]

B. Dacorogna, Direct methods in the calculus of variations,, vol. 78, (2008).

[12]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in finite elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165.

[13]

T. Donchev, E. Farkhi and B. S. Mordukhovich, Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces,, Journal of Differential Equations, 243 (2007), 301. doi: 10.1016/j.jde.2007.05.011.

[14]

A. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for variational inequalities over polyhedral convex sets,, SIAM Journal on Optimization, 6 (1996), 1087. doi: 10.1137/S1052623495284029.

[15]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process,, Mathematical Programming, 104 (2005), 347. doi: 10.1007/s10107-005-0619-y.

[16]

E. Emmrich, Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems,, Preprint series of the Institute of Mathematics, 637 ().

[17]

A. D. Ioffe and J. Outrata, On metric and calmness qualification conditions in subdifferential calculus,, Set-Valued Analysis, 16 (2008), 199. doi: 10.1007/s11228-008-0076-x.

[18]

M. Kočvara, M. Kružík and J. Outrata, On the control of an evolutionary equilibrium in micromagnetics,, in Optimization with Multivalued Mappings, 2 (2006), 143. doi: 10.1007/0-387-34221-4_8.

[19]

P. Krejčí and J. Sprekels, Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity,, Appl. Math, 43 (1998), 173. doi: 10.1023/A:1023224507448.

[20]

P. Krejčí and A. Vladimirov, Lipschitz continuity of polyhedral Skorokhod maps,, Zeitschrift für Analysis und Ihre Anwendungen, 20 (2000), 817. doi: 10.4171/ZAA/1047.

[21]

P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators,, in Nonlinear differential equations, (1999), 47.

[22]

A. S. Lewis and M. L. Overton, Nonsmooth optimization via quasi-Newton methods,, Mathematical Programming, (): 1. doi: 10.1007/s10107-012-0514-2.

[23]

S. Lu and S. Robinson, Normal fans of polyhedral convex sets,, Set-Valued Analysis, 16 (2008), 281. doi: 10.1007/s11228-008-0077-9.

[24]

Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints,, Cambridge University Press, (1996). doi: 10.1017/CBO9780511983658.

[25]

B. Maury and J. Venel, A discrete contact model for crowd motion,, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 145. doi: 10.1051/m2an/2010035.

[26]

Y. Moon, T. Yao and T. L. Friesz, Dynamic pricing and inventory policies: A strategic analysis of dual channel supply chain design,, Service Science, 2 (2010), 196. doi: 10.1287/serv.2.3.196.

[27]

B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings,, Journal of Mathematical Analysis and Applications, 183 (1994), 250. doi: 10.1006/jmaa.1994.1144.

[28]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I, II,, Springer, (2006).

[29]

J. J. Moreau, On unilateral constraints, friction and plasticity,, in New Variational Techniques in Mathematical Physics, (1974), 171.

[30]

J. Outrata, M. Kočvara and J. Zowe, Nonsmooth approach to Optimization Problems with Equilibrium Constraints,, Kluwer Academic Publishers, (1998). doi: 10.1007/978-1-4757-2825-5.

[31]

J.-S. Pang and D. E. Stewart, Differential variational inequalities,, Mathematical Programming, 113 (2008), 345. doi: 10.1007/s10107-006-0052-x.

[32]

R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions,, Ann. Inst. Henri Poincaré, 2 (1985), 167.

[33]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis,, Springer, (1998). doi: 10.1007/978-3-642-02431-3.

[34]

H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results,, SIAM Journal on Optimization, 2 (1992), 121. doi: 10.1137/0802008.

[35]

A. Skajaa, Limited Memory BFGS for Nonsmooth Optimization,, Master thesis, (2010).

[36]

A. Tasora, M. Anitescu, S. Negrini and D. Negrut, A compliant visco-plastic particle contact model based on differential variational inequalities,, International Journal of Non-Linear Mechanics, 53 (2013), 2. doi: 10.1016/j.ijnonlinmec.2013.01.010.

[37]

L. Thibault, Sweeping process with regular and nonregular sets,, Journal of Differential Equations, 193 (2003), 1. doi: 10.1016/S0022-0396(03)00129-3.

[38]

J. Venel, A numerical scheme for a class of sweeping processes,, Numerische Mathematik, 118 (2011), 367. doi: 10.1007/s00211-010-0329-0.

[39]

A. Visintin, Differential Models of Hysteresis,, Springer, (1994). doi: 10.1007/978-3-662-11557-2.

[1]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[2]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[3]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[4]

Alexandre Caboussat, Roland Glowinski. Numerical solution of a variational problem arising in stress analysis: The vector case. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1447-1472. doi: 10.3934/dcds.2010.27.1447

[5]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[6]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[7]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[8]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[9]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[10]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[11]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[12]

Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206

[13]

Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317

[14]

Carlos M. Hernández-Suárez, Carlos Castillo-Chavez, Osval Montesinos López, Karla Hernández-Cuevas. An application of queuing theory to SIS and SEIS epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (4) : 809-823. doi: 10.3934/mbe.2010.7.809

[15]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[16]

Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001

[17]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[18]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[19]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[20]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]