2014, 19(9): 2915-2940. doi: 10.3934/dcdsb.2014.19.2915

Global dynamics of a piece-wise epidemic model with switching vaccination strategy

1. 

Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, China

2. 

Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham, Kent ME44TB, United Kingdom

Received  December 2013 Revised  May 2014 Published  September 2014

A piece-wise epidemic model of a switching vaccination program, implemented once the number of people exposed to a disease-causing virus reaches a critical level, is proposed. In addition, variation or uncertainties in interventions are examined with a perturbed system version of the model. We also analyzed the global dynamic behaviors of both the original piece-wise system and the perturbed version theoretically, using generalized Jacobian theory, Lyapunov constants for a non-smooth vector field and a generalization of Dulac's criterion. The main results show that, as the critical value varies, there are three possibilities for stabilization of the piece-wise system: (i) at the disease-free equilibrium; (ii) at the endemic states for the two subsystems or (iii) at a generalized equilibrium which is a novel global attractor for non-smooth systems. The perturbed system exhibits new global attractors including a pseudo-focus of parabolic-parabolic (PP) type, a pseudo-equilibrium and a crossing cycle surrounding a sliding mode region. Our findings demonstrate that an infectious disease can be eradicated either by increasing the vaccination rate or by stabilizing the number of infected individuals at a previously given level, conditional upon a suitable critical level and the parameter values.
Citation: Aili Wang, Yanni Xiao, Robert A. Cheke. Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2915-2940. doi: 10.3934/dcdsb.2014.19.2915
References:
[1]

J. Arino, C. C. Mccluskey and P. V. D. Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260. doi: 10.1137/S0036139902413829.

[2]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems,, Springer, (2008).

[3]

, China Ministry of Health and joint UN programme on HIV/AIDS WHO, Estimates for the HIV/AIDS Epidemic in China,, 2009., ().

[4]

F. Clarke, Y. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).

[5]

A. B. Claudio, P. D. S. Paulo and A. T. Marco, A singular approach to discontinuous vector fields on the plane,, J. Diff. Equa., 231 (2006), 633. doi: 10.1016/j.jde.2006.08.017.

[6]

B. Coll, A. Gasull and R. Prohens, Degenerate hopf bifurcations in discontinuous planar system,, J. Math. Anal. Appl., 253 (2001), 671. doi: 10.1006/jmaa.2000.7188.

[7]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Kluwer Academic, (1988). doi: 10.1007/978-94-015-7793-9.

[8]

D. Greenhalgh, Q. J. A. Khan and F. I. Lewis, Recurrent epidemic cycles in an infectious disease model with a time delay in loss of vaccine immunity,, Nonl. Anal. TMA., 63 (2005). doi: 10.1016/j.na.2004.12.018.

[9]

M. A. Han and W. N. Zhang, On hopf bifurcation in non-smooth planar systems,, J. Diff. Equa., 248 (2010), 2399. doi: 10.1016/j.jde.2009.10.002.

[10]

, A/H1N1 vaccination program extends to all Beijingers,, November 7, (2009), 2009.

[11]

, Guangdong starts A/H1N1 vaccination for migrant workers,, January 6, (2010), 2010.

[12]

J. Hui and L. S. Chen, Impulsive vaccination of SIR epidemic models with nonlinear incidence rates,, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 595. doi: 10.3934/dcdsb.2004.4.595.

[13]

G. R. Jiang and Q. G. Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination,, Appl. Math. Comput., 215 (2009), 1035. doi: 10.1016/j.amc.2009.06.032.

[14]

R. I. Leine, Bifurcations of equilibria in non-smooth continuous systems,, Phys. D, 223 (2006), 121. doi: 10.1016/j.physd.2006.08.021.

[15]

R. I. Leine and D. H. van Campen, Bifurcation phenomena in non-smooth dynamical systems,, Eur. J. Mech. A Solids, 25 (2006), 595. doi: 10.1016/j.euromechsol.2006.04.004.

[16]

D. Liberzon, Switching in Systems and Control,, Springer-Verlag, (1973). doi: 10.1007/978-1-4612-0017-8.

[17]

J. Melin, Does distribution theory contain means for extending Poincare-Bendixson theory,, J. Math. Anal. Appl., 303 (2005), 81. doi: 10.1016/j.jmaa.2004.06.069.

[18]

M. E. M. Meza, A. Bhaya, E. K. Kaszkurewicz, D. A. Silveira and M. I. Costa, Threshold policies control for predator-prey systems using a control Liapunov function approach,, Theor. Popul. Biol., 67 (2005), 273. doi: 10.1016/j.tpb.2005.01.005.

[19]

M. E. M. Meza, M. I. S. Costa, A. Bhaya and E. Kaszkurewicz, Threshold policies in the control of predator-prey models,, Preprints of the 15th Triennial World Congress (IFAC), (2002), 1.

[20]

L. F. Nie, Z. D. Teng and A. Torres, Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination,, Nonl. Anal. RWA., 13 (2012), 1621. doi: 10.1016/j.nonrwa.2011.11.019.

[21]

A. d'. Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model,, Math. Bios., 179 (2002), 57. doi: 10.1016/S0025-5564(02)00095-0.

[22]

L. Sanchez, Convergence to equilibria in the Lorenz system via monotone methods,, J. Diff. Equa., 217 (2005), 341. doi: 10.1016/j.jde.2004.08.005.

[23]

S. Y. Tang and J. H. Liang, Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge,, Nonl. Anal. TMA., 76 (2013), 165. doi: 10.1016/j.na.2012.08.013.

[24]

S. Y. Tang, J. H. Liang, Y. N. Xiao and R. A. Cheke, Sliding bifurcation of Filippov two stage pest control models with economic thresholds,, SIAM J. Appl. Math., 72 (2012), 1061. doi: 10.1137/110847020.

[25]

S. Y. Tang, Y. N. Xiao and et.al., Community-based measures for mitigating the 2009 H1N1 pandemic in China,, PLoS ONE, 5 (2010), 1. doi: 10.1371/journal.pone.0010911.

[26]

V. I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems,, Mir, (1978).

[27]

V. I. Utkin, Sliding Modes in Control and Optimization,, Springer, (1992). doi: 10.1007/978-3-642-84379-2.

[28]

A. L. Wang and Y. N. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination,, Internat. J. Bifur. Chaos, 23 (2013). doi: 10.1142/S0218127413501447.

[29]

W. D. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58. doi: 10.1016/j.mbs.2005.12.022.

[30]

Y. N. Xiao and S. Y. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonl. Anal. RWA., 11 (2010), 4154. doi: 10.1016/j.nonrwa.2010.05.002.

[31]

Y. N. Xiao, X. X. Xu and S. Y. Tang, Sliding mode control of outbreaks of emerging infectious diseases,, Bull. Math. Biol., 74 (2012), 2403. doi: 10.1007/s11538-012-9758-5.

[32]

Y. N. Xiao, T. T. Zhao and S. Y. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence,, Math. Biosci. Eng., 10 (2013), 445. doi: 10.3934/mbe.2013.10.445.

[33]

T. R. Zhang and W. D. Wang, Hopf bifurcation and bistability of a nutrient-phytoplankton-zooplankton model,, Appl. Math. Model., 36 (2012), 6225. doi: 10.1016/j.apm.2012.02.012.

show all references

References:
[1]

J. Arino, C. C. Mccluskey and P. V. D. Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260. doi: 10.1137/S0036139902413829.

[2]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems,, Springer, (2008).

[3]

, China Ministry of Health and joint UN programme on HIV/AIDS WHO, Estimates for the HIV/AIDS Epidemic in China,, 2009., ().

[4]

F. Clarke, Y. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).

[5]

A. B. Claudio, P. D. S. Paulo and A. T. Marco, A singular approach to discontinuous vector fields on the plane,, J. Diff. Equa., 231 (2006), 633. doi: 10.1016/j.jde.2006.08.017.

[6]

B. Coll, A. Gasull and R. Prohens, Degenerate hopf bifurcations in discontinuous planar system,, J. Math. Anal. Appl., 253 (2001), 671. doi: 10.1006/jmaa.2000.7188.

[7]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,, Kluwer Academic, (1988). doi: 10.1007/978-94-015-7793-9.

[8]

D. Greenhalgh, Q. J. A. Khan and F. I. Lewis, Recurrent epidemic cycles in an infectious disease model with a time delay in loss of vaccine immunity,, Nonl. Anal. TMA., 63 (2005). doi: 10.1016/j.na.2004.12.018.

[9]

M. A. Han and W. N. Zhang, On hopf bifurcation in non-smooth planar systems,, J. Diff. Equa., 248 (2010), 2399. doi: 10.1016/j.jde.2009.10.002.

[10]

, A/H1N1 vaccination program extends to all Beijingers,, November 7, (2009), 2009.

[11]

, Guangdong starts A/H1N1 vaccination for migrant workers,, January 6, (2010), 2010.

[12]

J. Hui and L. S. Chen, Impulsive vaccination of SIR epidemic models with nonlinear incidence rates,, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 595. doi: 10.3934/dcdsb.2004.4.595.

[13]

G. R. Jiang and Q. G. Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination,, Appl. Math. Comput., 215 (2009), 1035. doi: 10.1016/j.amc.2009.06.032.

[14]

R. I. Leine, Bifurcations of equilibria in non-smooth continuous systems,, Phys. D, 223 (2006), 121. doi: 10.1016/j.physd.2006.08.021.

[15]

R. I. Leine and D. H. van Campen, Bifurcation phenomena in non-smooth dynamical systems,, Eur. J. Mech. A Solids, 25 (2006), 595. doi: 10.1016/j.euromechsol.2006.04.004.

[16]

D. Liberzon, Switching in Systems and Control,, Springer-Verlag, (1973). doi: 10.1007/978-1-4612-0017-8.

[17]

J. Melin, Does distribution theory contain means for extending Poincare-Bendixson theory,, J. Math. Anal. Appl., 303 (2005), 81. doi: 10.1016/j.jmaa.2004.06.069.

[18]

M. E. M. Meza, A. Bhaya, E. K. Kaszkurewicz, D. A. Silveira and M. I. Costa, Threshold policies control for predator-prey systems using a control Liapunov function approach,, Theor. Popul. Biol., 67 (2005), 273. doi: 10.1016/j.tpb.2005.01.005.

[19]

M. E. M. Meza, M. I. S. Costa, A. Bhaya and E. Kaszkurewicz, Threshold policies in the control of predator-prey models,, Preprints of the 15th Triennial World Congress (IFAC), (2002), 1.

[20]

L. F. Nie, Z. D. Teng and A. Torres, Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination,, Nonl. Anal. RWA., 13 (2012), 1621. doi: 10.1016/j.nonrwa.2011.11.019.

[21]

A. d'. Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model,, Math. Bios., 179 (2002), 57. doi: 10.1016/S0025-5564(02)00095-0.

[22]

L. Sanchez, Convergence to equilibria in the Lorenz system via monotone methods,, J. Diff. Equa., 217 (2005), 341. doi: 10.1016/j.jde.2004.08.005.

[23]

S. Y. Tang and J. H. Liang, Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge,, Nonl. Anal. TMA., 76 (2013), 165. doi: 10.1016/j.na.2012.08.013.

[24]

S. Y. Tang, J. H. Liang, Y. N. Xiao and R. A. Cheke, Sliding bifurcation of Filippov two stage pest control models with economic thresholds,, SIAM J. Appl. Math., 72 (2012), 1061. doi: 10.1137/110847020.

[25]

S. Y. Tang, Y. N. Xiao and et.al., Community-based measures for mitigating the 2009 H1N1 pandemic in China,, PLoS ONE, 5 (2010), 1. doi: 10.1371/journal.pone.0010911.

[26]

V. I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems,, Mir, (1978).

[27]

V. I. Utkin, Sliding Modes in Control and Optimization,, Springer, (1992). doi: 10.1007/978-3-642-84379-2.

[28]

A. L. Wang and Y. N. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination,, Internat. J. Bifur. Chaos, 23 (2013). doi: 10.1142/S0218127413501447.

[29]

W. D. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58. doi: 10.1016/j.mbs.2005.12.022.

[30]

Y. N. Xiao and S. Y. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonl. Anal. RWA., 11 (2010), 4154. doi: 10.1016/j.nonrwa.2010.05.002.

[31]

Y. N. Xiao, X. X. Xu and S. Y. Tang, Sliding mode control of outbreaks of emerging infectious diseases,, Bull. Math. Biol., 74 (2012), 2403. doi: 10.1007/s11538-012-9758-5.

[32]

Y. N. Xiao, T. T. Zhao and S. Y. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence,, Math. Biosci. Eng., 10 (2013), 445. doi: 10.3934/mbe.2013.10.445.

[33]

T. R. Zhang and W. D. Wang, Hopf bifurcation and bistability of a nutrient-phytoplankton-zooplankton model,, Appl. Math. Model., 36 (2012), 6225. doi: 10.1016/j.apm.2012.02.012.

[1]

Boris Kruglikov, Martin Rypdal. A piece-wise affine contracting map with positive entropy. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 393-394. doi: 10.3934/dcds.2006.16.393

[2]

Hongying Shu, Xiang-Sheng Wang. Global dynamics of a coupled epidemic model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1575-1585. doi: 10.3934/dcdsb.2017076

[3]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[4]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[5]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[6]

Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences & Engineering, 2016, 13 (4) : 813-840. doi: 10.3934/mbe.2016019

[7]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[8]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[9]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

[10]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with generalized nonlinear incidence and vaccination age. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 977-996. doi: 10.3934/dcdsb.2016.21.977

[11]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[12]

Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027

[13]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[14]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[15]

Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77

[16]

Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic & Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007

[17]

F. Berezovskaya, G. Karev, Baojun Song, Carlos Castillo-Chavez. A Simple Epidemic Model with Surprising Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 133-152. doi: 10.3934/mbe.2005.2.133

[18]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[19]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[20]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]