2014, 4(4): 401-449. doi: 10.3934/mcrf.2014.4.401

Exact controllability of scalar conservation laws with strict convex flux

1. 

Centre for Applicable Mathematics, Tata Institute of Fundamental Research, Post Bag No 6503, Sharadanagar, Bangalore - 560065, India, India, India

Received  February 2012 Revised  February 2014 Published  September 2014

We consider the scalar conservation law with strict convex flux in one space dimension. In this paper we study the exact controllability of entropy solution by using initial or boundary data control. Some partial results have been obtained in [5],[23]. Here we investigate the precise conditions under which, the exact controllability problem admits a solution. The basic ingredients in the proof of these results are, Lax-Oleinik [15] explicit formula and finer properties of the characteristics curves.
Citation: Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401
References:
[1]

Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Optimal controllability for scalar conservation laws with convex flux,, J. Hyperbolic Differ. Equ., 11 (2014), 477.

[2]

Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Structure of the entropy solution of a scalar conservation law with strict convex flux,, J. Hyperbolic Differ. Equ., 9 (2012), 571. doi: 10.1142/S0219891612500191.

[3]

Adimurthi and G. D. Veerappa Gowda, Conservation Law with discontinuous flux,, J.Math, 43 (2003), 27.

[4]

F. Ancona, O. Glass and K. T. Nguyen, Lower compactness estimates for scalar balance laws,, Comm. Pure Appl. Math, 65 (2012), 1303. doi: 10.1002/cpa.21406.

[5]

F. Ancona and A. Marson, On the attainability set for scalar non linear conservation laws with boundary control,, SIAM J.Control Optim, 36 (1998), 290. doi: 10.1137/S0363012996304407.

[6]

F. Ancona and A. Marson, Scalar non linear conservation laws with integrable boundary data,, Nonlinear Anal, 35 (1999), 687. doi: 10.1016/S0362-546X(97)00697-4.

[7]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017. doi: 10.1080/03605307908820117.

[8]

A. Bressan and A. Marson, A maximum principle for optimally controlled systems of conservation laws,, Rend. Sem. Mat. Univ. Padova, 94 (1995), 79.

[9]

T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics,, Pitman Monographs and Surveys in Pure and Applied Mathematics, (1989).

[10]

M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations,, SIAM J. Control Optim, 48 (2009), 1567. doi: 10.1137/070685749.

[11]

J. M. Coron, Global asymptotic stabilization for controllable systems without drift,, Mth. Control signals systems, 5 (1992), 295. doi: 10.1007/BF01211563.

[12]

C. M. Dafermos, Characteristics in hyperbolic conservations laws, A study of the structure and the asymptotic behavior of solutions,, Research notes in maths, I (1977), 1.

[13]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, $2^{nd}$ edition, (2000).

[14]

J. I. Diaz, Obstruction and some approximate controllability results for the Burgers equation and related problems,, Control of partial differential equations and applications, (1996), 63.

[15]

L. C. Evans, Partial Differential Equations,, Graduate studies in Mathematics, (1998).

[16]

E. Fernández-Cara and S. Guerrero, Remarks on the null controllability of the Burgers equation,, C. R. Math. Acad. Sci. Paris, 341 (2005), 229. doi: 10.1016/j.crma.2005.06.005.

[17]

A. Fursikov and O. Yu. Imanuvilov, On controllability of certain systems simulating a fluid flow,, Flow control, (1995), 149. doi: 10.1007/978-1-4612-2526-3_7.

[18]

S. S. Ghoshal, Finer Analysis of Characteristic Curves, and Its Applications to Shock Profile, Exact and Optimal Controllability of Conservation Law with Strict convex Fluxes,, Ph.D thesis, (2012).

[19]

O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation,, SIAM J. Control optim., 46 (2007), 1211. doi: 10.1137/060664677.

[20]

E. Godleweski and P. A. Raviant, Hyperbolic Systems of Conservation Laws,, Mathematiques and Applications, (1991).

[21]

S. Guerrero and O. Y. Immunauvilov, Remarks on global controllability for the Burgers equation with two control forces,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 897. doi: 10.1016/j.anihpc.2006.06.010.

[22]

E. Hopf, The partial differential equation $u_t + u u_x = \mu u_{x x}$,, Comm. Pure Appl. Math, 3 (1950), 201.

[23]

T. Horsin, On the controllability of the Burger equation,, ESIAM, 3 (1998), 83. doi: 10.1051/cocv:1998103.

[24]

K. T. Joseph and G. D. Veerappa Gowda, Explicit formula for the solution of Convex conservation laws with boundary condition,, Duke Math.J., 62 (1991), 401. doi: 10.1215/S0012-7094-91-06216-2.

[25]

S. N. Kružkov, First order quasilinear equations with several independent variables,, (Russian), 81 (1970), 228.

[26]

P. D. Lax, Hyperbolic systems of conservation Laws II,, comm Pure Appl. Math, 10 (1957), 537. doi: 10.1002/cpa.3160100406.

show all references

References:
[1]

Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Optimal controllability for scalar conservation laws with convex flux,, J. Hyperbolic Differ. Equ., 11 (2014), 477.

[2]

Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Structure of the entropy solution of a scalar conservation law with strict convex flux,, J. Hyperbolic Differ. Equ., 9 (2012), 571. doi: 10.1142/S0219891612500191.

[3]

Adimurthi and G. D. Veerappa Gowda, Conservation Law with discontinuous flux,, J.Math, 43 (2003), 27.

[4]

F. Ancona, O. Glass and K. T. Nguyen, Lower compactness estimates for scalar balance laws,, Comm. Pure Appl. Math, 65 (2012), 1303. doi: 10.1002/cpa.21406.

[5]

F. Ancona and A. Marson, On the attainability set for scalar non linear conservation laws with boundary control,, SIAM J.Control Optim, 36 (1998), 290. doi: 10.1137/S0363012996304407.

[6]

F. Ancona and A. Marson, Scalar non linear conservation laws with integrable boundary data,, Nonlinear Anal, 35 (1999), 687. doi: 10.1016/S0362-546X(97)00697-4.

[7]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017. doi: 10.1080/03605307908820117.

[8]

A. Bressan and A. Marson, A maximum principle for optimally controlled systems of conservation laws,, Rend. Sem. Mat. Univ. Padova, 94 (1995), 79.

[9]

T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics,, Pitman Monographs and Surveys in Pure and Applied Mathematics, (1989).

[10]

M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations,, SIAM J. Control Optim, 48 (2009), 1567. doi: 10.1137/070685749.

[11]

J. M. Coron, Global asymptotic stabilization for controllable systems without drift,, Mth. Control signals systems, 5 (1992), 295. doi: 10.1007/BF01211563.

[12]

C. M. Dafermos, Characteristics in hyperbolic conservations laws, A study of the structure and the asymptotic behavior of solutions,, Research notes in maths, I (1977), 1.

[13]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, $2^{nd}$ edition, (2000).

[14]

J. I. Diaz, Obstruction and some approximate controllability results for the Burgers equation and related problems,, Control of partial differential equations and applications, (1996), 63.

[15]

L. C. Evans, Partial Differential Equations,, Graduate studies in Mathematics, (1998).

[16]

E. Fernández-Cara and S. Guerrero, Remarks on the null controllability of the Burgers equation,, C. R. Math. Acad. Sci. Paris, 341 (2005), 229. doi: 10.1016/j.crma.2005.06.005.

[17]

A. Fursikov and O. Yu. Imanuvilov, On controllability of certain systems simulating a fluid flow,, Flow control, (1995), 149. doi: 10.1007/978-1-4612-2526-3_7.

[18]

S. S. Ghoshal, Finer Analysis of Characteristic Curves, and Its Applications to Shock Profile, Exact and Optimal Controllability of Conservation Law with Strict convex Fluxes,, Ph.D thesis, (2012).

[19]

O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation,, SIAM J. Control optim., 46 (2007), 1211. doi: 10.1137/060664677.

[20]

E. Godleweski and P. A. Raviant, Hyperbolic Systems of Conservation Laws,, Mathematiques and Applications, (1991).

[21]

S. Guerrero and O. Y. Immunauvilov, Remarks on global controllability for the Burgers equation with two control forces,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 897. doi: 10.1016/j.anihpc.2006.06.010.

[22]

E. Hopf, The partial differential equation $u_t + u u_x = \mu u_{x x}$,, Comm. Pure Appl. Math, 3 (1950), 201.

[23]

T. Horsin, On the controllability of the Burger equation,, ESIAM, 3 (1998), 83. doi: 10.1051/cocv:1998103.

[24]

K. T. Joseph and G. D. Veerappa Gowda, Explicit formula for the solution of Convex conservation laws with boundary condition,, Duke Math.J., 62 (1991), 401. doi: 10.1215/S0012-7094-91-06216-2.

[25]

S. N. Kružkov, First order quasilinear equations with several independent variables,, (Russian), 81 (1970), 228.

[26]

P. D. Lax, Hyperbolic systems of conservation Laws II,, comm Pure Appl. Math, 10 (1957), 537. doi: 10.1002/cpa.3160100406.

[1]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : ⅰ-ⅲ. doi: 10.3934/dcdss.201805i

[2]

Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411

[3]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[4]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[5]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[6]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[7]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[8]

Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493

[9]

Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917

[10]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[11]

Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623

[12]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[13]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[14]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[15]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[16]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[17]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[18]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[19]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[20]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (7)

[Back to Top]