2014, 9(3): 433-451. doi: 10.3934/nhm.2014.9.433

Optimization of bodies with locally periodic microstructure by varying the periodicity pattern

1. 

CMAF, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal, Portugal

Received  October 2013 Revised  May 2014 Published  October 2014

This paper describes a numerical method to optimize elastic bodies featuring a locally periodic microscopic pattern. A new idea, of optimizing the periodicity cell itself, is considered. In previously published works, the authors have found that optimizing the shape and topology of the model hole gives a limited flexibility to the microstructure for adapting to the macroscopic loads. In the present study the periodicity cell varies during the optimization process, thus allowing the microstructure to adapt freely to the given loads. Our approach makes the link between the microscopic level and the macroscopic one. Two-dimensional linearly elastic bodies are considered, however the same techniques can be applied to three-dimensional bodies. Homogenization theory is used to describe the macroscopic (effective) elastic properties of the body. Numerical examples are presented, in which a cantilever is optimized for different load cases, one of them being multi-load. The problem is numerically heavy, since the optimization of the macroscopic problem is performed by optimizing in simultaneous hundreds or even thousands of periodic structures, each one using its own finite element mesh on the periodicity cell. Parallel computation is used in order to alleviate the computational burden.
Citation: Cristian Barbarosie, Anca-Maria Toader. Optimization of bodies with locally periodic microstructure by varying the periodicity pattern. Networks & Heterogeneous Media, 2014, 9 (3) : 433-451. doi: 10.3934/nhm.2014.9.433
References:
[1]

G. Allaire, Shape Optimization by the Homogenization Method,, Springer, (2002). doi: 10.1007/978-1-4684-9286-6.

[2]

G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level set method,, Journal of Computational Physics, 194 (2004), 363. doi: 10.1016/j.jcp.2003.09.032.

[3]

C. Barbarosie, Shape optimization of periodic structures,, Computational Mechanics, 30 (2003), 235. doi: 10.1007/s00466-002-0382-3.

[4]

C. Barbarosie and S. Lopes, A generalized notion of compliance,, Comptes Rendus Mécanique, 339 (2011), 641. doi: 10.1016/j.crme.2011.07.002.

[5]

C. Barbarosie and A.-M. Toader, Shape and Topology Optimization for periodic problems, Part I, The shape and the topological derivative,, Structural and Multidisciplinary Optimization, 40 (2009), 381. doi: 10.1007/s00158-009-0378-0.

[6]

C. Barbarosie and A.-M. Toader, Shape and Topology Optimization for periodic problems, Part II, Optimization algorithm and numerical examples,, Structural and Multidisciplinary Optimization, 40 (2009), 393. doi: 10.1007/s00158-009-0377-1.

[7]

C. Barbarosie and A.-M. Toader, Optimization of bodies with locally periodic microstructre,, Mechanics of advanced materials and structures, 19 (2012), 290. doi: 10.1080/15376494.2011.642939.

[8]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, North-Holland, (1978).

[9]

M. Briane, Homogenization of a nonperiodic material,, J. Math. Pures et Appl., 73 (1994), 47.

[10]

A. Cherkaev, Variational Methods for Structural Optimization,, Springer Verlag, (2000). doi: 10.1007/978-1-4612-1188-4.

[11]

D. Cioranescu and J. S. J. Paulin, Homogenization in open sets with holes,, Journal of Mathematical Analysis and Applications, 71 (1979), 590. doi: 10.1016/0022-247X(79)90211-7.

[12]

F. Murat and L. Tartar, H-convergence,, in Topics in the Mathematical Modelling of Composite Materials, 31 (1997), 21.

[13]

O. Pantz and K. Trabelsi, A post-treatment of the homogenization method for shape optimization,, SIAM J. Control Optim., 47 (2008), 1380. doi: 10.1137/070688900.

[14]

H. Rodrigues, J. M. Guedes and M. P. Bendsøe, Hierarchical optimization of material and structure,, Structural and Multidisciplinary Optimization, 24 (2002), 1. doi: 10.1007/s00158-002-0209-z.

[15]

F. Schury, M. Stingl and F. Wein, Efficient two-scale optimization of manufacturable graded structures,, SIAM Journal on Scientific Computing, 34 (2012). doi: 10.1137/110850335.

[16]

A. M. Toader, The topological derivative of homogenized elastic coefficients of periodic microstructures,, SIAM Journal on Control and Optimization, 49 (2011), 195. doi: 10.1137/100782772.

[17]

, http://webpages.fc.ul.pt/~cabarbarosie/en/anim-2011/, (web page), ().

[18]

, http://webpages.fc.ul.pt/~cabarbarosie/en/examples-2013.html, (web page), ().

show all references

References:
[1]

G. Allaire, Shape Optimization by the Homogenization Method,, Springer, (2002). doi: 10.1007/978-1-4684-9286-6.

[2]

G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level set method,, Journal of Computational Physics, 194 (2004), 363. doi: 10.1016/j.jcp.2003.09.032.

[3]

C. Barbarosie, Shape optimization of periodic structures,, Computational Mechanics, 30 (2003), 235. doi: 10.1007/s00466-002-0382-3.

[4]

C. Barbarosie and S. Lopes, A generalized notion of compliance,, Comptes Rendus Mécanique, 339 (2011), 641. doi: 10.1016/j.crme.2011.07.002.

[5]

C. Barbarosie and A.-M. Toader, Shape and Topology Optimization for periodic problems, Part I, The shape and the topological derivative,, Structural and Multidisciplinary Optimization, 40 (2009), 381. doi: 10.1007/s00158-009-0378-0.

[6]

C. Barbarosie and A.-M. Toader, Shape and Topology Optimization for periodic problems, Part II, Optimization algorithm and numerical examples,, Structural and Multidisciplinary Optimization, 40 (2009), 393. doi: 10.1007/s00158-009-0377-1.

[7]

C. Barbarosie and A.-M. Toader, Optimization of bodies with locally periodic microstructre,, Mechanics of advanced materials and structures, 19 (2012), 290. doi: 10.1080/15376494.2011.642939.

[8]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, North-Holland, (1978).

[9]

M. Briane, Homogenization of a nonperiodic material,, J. Math. Pures et Appl., 73 (1994), 47.

[10]

A. Cherkaev, Variational Methods for Structural Optimization,, Springer Verlag, (2000). doi: 10.1007/978-1-4612-1188-4.

[11]

D. Cioranescu and J. S. J. Paulin, Homogenization in open sets with holes,, Journal of Mathematical Analysis and Applications, 71 (1979), 590. doi: 10.1016/0022-247X(79)90211-7.

[12]

F. Murat and L. Tartar, H-convergence,, in Topics in the Mathematical Modelling of Composite Materials, 31 (1997), 21.

[13]

O. Pantz and K. Trabelsi, A post-treatment of the homogenization method for shape optimization,, SIAM J. Control Optim., 47 (2008), 1380. doi: 10.1137/070688900.

[14]

H. Rodrigues, J. M. Guedes and M. P. Bendsøe, Hierarchical optimization of material and structure,, Structural and Multidisciplinary Optimization, 24 (2002), 1. doi: 10.1007/s00158-002-0209-z.

[15]

F. Schury, M. Stingl and F. Wein, Efficient two-scale optimization of manufacturable graded structures,, SIAM Journal on Scientific Computing, 34 (2012). doi: 10.1137/110850335.

[16]

A. M. Toader, The topological derivative of homogenized elastic coefficients of periodic microstructures,, SIAM Journal on Control and Optimization, 49 (2011), 195. doi: 10.1137/100782772.

[17]

, http://webpages.fc.ul.pt/~cabarbarosie/en/anim-2011/, (web page), ().

[18]

, http://webpages.fc.ul.pt/~cabarbarosie/en/examples-2013.html, (web page), ().

[1]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[2]

Guodong Ma, Jinbao Jian. A QP-free algorithm of quasi-strongly sub-feasible directions for inequality constrained optimization. Journal of Industrial & Management Optimization, 2015, 11 (1) : 307-328. doi: 10.3934/jimo.2015.11.307

[3]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[4]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[5]

Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215

[6]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[7]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[8]

Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127

[9]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

[10]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-24. doi: 10.3934/jimo.2018077

[11]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018142

[12]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018134

[13]

Tsuguhito Hirai, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance optimization of parallel-distributed processing with checkpointing for cloud environment. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1423-1442. doi: 10.3934/jimo.2018014

[14]

Miriam Kiessling, Sascha Kurz, Jörg Rambau. The integrated size and price optimization problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 669-693. doi: 10.3934/naco.2012.2.669

[15]

Bruce D. Craven, Sardar M. N. Islam. Dynamic optimization models in finance: Some extensions to the framework, models, and computation. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1129-1146. doi: 10.3934/jimo.2014.10.1129

[16]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[17]

Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389

[18]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[19]

Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759

[20]

Oliver Jenkinson. Ergodic Optimization. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]