2015, 11(3): 933-949. doi: 10.3934/jimo.2015.11.933

Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns

1. 

Department of Industrial Engineering, Karazmi University, Mofatteh Avenue, Tehran, Iran, Iran

2. 

Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey

3. 

Department of Industrial Engineering, Tarbiat Modares University (TMU), Tehran, Iran

Received  August 2013 Revised  July 2014 Published  October 2014

This paper develops an Economic Order Quantity (EOQ) model for non-instantaneous deteriorating items with selling price- and inflation-induced demand under the effect of inflation and customer returns. The customer returns are assumed as a function of demand and price. Shortages are allowed and partially backlogged. The effects of time value of money are studied using the Discounted Cash Flow approach. The main objective is to determine the optimal selling price, the optimal length of time in which there is no inventory shortage, and the optimal replenishment cycle simultaneously such that the present value of total profit is maximized. An efficient algorithm is presented to find the optimal solution of the developed model. Finally, a numerical example is extracted to solve the presented inventory model using the proposed algorithm and the effects of the customer returns, inflation, and non-instantaneous deterioration are also discussed. The paper ends with a conclusion and outlook to future studies.
Citation: Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933
References:
[1]

P. L. Abad, Optimal pricing and lot sizing under conditions of perishability and partial backordering,, Managem. Sci., 42 (1996), 1093. doi: 10.1287/mnsc.42.8.1093.

[2]

P. L. Abad, Optimal price and order size for a reseller under partial backordering,, Comp. and Oper. Res., 28 (2001), 53. doi: 10.1016/S0305-0548(99)00086-6.

[3]

E. T. Anderson, K. Hansen, D. Simister and L. K. Wang, How are demand and returns related? Theory and empirical evidence,, Working paper, (2006).

[4]

A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma, A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging,, Applied Mathematics and Computation, 232 (2014), 1125. doi: 10.1016/j.amc.2014.01.115.

[5]

J. A. Buzacott, Economic order quantity with inflation,, Operational Quarterly, 26 (1975), 553. doi: 10.2307/3008214.

[6]

C. T. Chang, J. T. Teng and S. K. Goyal, Optimal replenishment policies for non instantaneous deteriorating items with stock-dependent demand. Internat,, J. of Prod. Econ, 123 (2010), 62.

[7]

H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging,, Eur. J. Oper. Res., 168 (2005), 51. doi: 10.1016/j.ejor.2004.05.003.

[8]

J. Chen and P. C. Bell, The impact of customer returns on pricing and order decisions,, Eur. J. Oper. Res., 195 (2009), 280. doi: 10.1016/j.ejor.2008.01.030.

[9]

R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration,, AIIE Trans., 5 (1973), 323. doi: 10.1080/05695557308974918.

[10]

T. K. Datta and A. K. Pal, Effects of inflation and time value of money on an inventory model with linear time-dependent demand rate and shortages,, Eur. J. Oper. Res., 52 (1991), 326. doi: 10.1016/0377-2217(91)90167-T.

[11]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging,, Omega, 35 (2007), 184. doi: 10.1016/j.omega.2005.05.002.

[12]

C. Y. Dye, L. Y. Quyang and T. P. Hsieh, Inventory and pricing strategy for deteriorating items with shortages: A discounted cash flow approach,, Comput. and Industrial Engineering, 52 (2007), 29. doi: 10.1016/j.cie.2006.10.009.

[13]

K. V. Geetha and R. Uthayakumar, Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments,, J. of Comp. and Appl. Math., 223 (2010), 2492. doi: 10.1016/j.cam.2009.10.031.

[14]

P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system,, Internat. J. of Prod. Res., 21 (1963), 449.

[15]

A. Gholami-Qadikolaei, A. Mirzazadeh and R. Tavakkoli-Moghaddam, A stochastic multiobjective multiconstraint inventory model under inflationary condition and different inspection scenarios,, Proceedings of the Institution of Mechanical Engineers, 227 (2013), 1057. doi: 10.1177/0954405413481452.

[16]

M. Ghoreishi, A. Arshsadi-Khamseh and A. Mirzazadeh, Joint Optimal Pricing and Inventory Control for Deteriorating Items under Inflation and Customer Returns,, Journal of Industrial Engineering, 2013 (2013). doi: 10.1155/2013/709083.

[17]

M. Ghoreishi, A. Mirzazadeh and G. W. Weber, Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns,, Optimization, 63 (2014), 1785. doi: 10.1080/02331934.2013.853059.

[18]

M. Ghoreishi, A. Mirzazadeh and I. Nakhai-Kamalabadi, Optimal pricing and lot-sizing policies for an economic production quantity model with non-instantaneous deteriorating items, permissible delay in payments, customer returns, and inflation,, to appear in Proceedings of the Institution of Mechanical Engineers, (2014). doi: 10.1177/0954405414522215.

[19]

B. H. Gilding, Inflation and the optimal inventory replenishment schedule within a finite planning horizon,, European Journal of Operational Research, 234 (2014), 683. doi: 10.1016/j.ejor.2013.11.001.

[20]

S. Goal, Y. P. Gupta and C. R. Bector, Impact of inflation on economic quantity discount schedules to increase vendor profits,, Internat. J. of Systems Sci., 22 (1991), 197. doi: 10.1080/00207729108910600.

[21]

S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory,, Eur. J. Oper. Res., 134 (2001), 1. doi: 10.1016/S0377-2217(00)00248-4.

[22]

A. Guria, B. Das, S. Mondal and M. Maiti, Inventory policy for an item with inflation induced purchasing price, selling price and demand with immediate part payment,, Applied Mathematical Modeling, 37 (2013), 240. doi: 10.1016/j.apm.2012.02.010.

[23]

R. W. Hall, Price changes and order quantities: Impacts of discount rate and storage costs,, IIE Trans., 24 (1992), 104. doi: 10.1080/07408179208964207.

[24]

M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand,, J. Oper. Res. Soc., 47 (1996), 1228. doi: 10.2307/3010036.

[25]

M. A. Hariga and M. Ben-Daya, Optimal time varying lot sizing models under inflationary conditions,, Eur. J. Oper. Res., 89 (1996), 313. doi: 10.1016/0377-2217(94)00256-8.

[26]

K. J. Heng, J. Labban and R. J. Linn, An order-level lot-size inventory model for deteriorating items with finite replenishment rate,, Comp. Ind. Eng., 20 (1991), 187.

[27]

J. Hess and G. Mayhew, Modeling merchandise returns in direct marketing,, J. of Direct Marketing, 11 (1997), 20. doi: 10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.3.CO;2-0.

[28]

I. Horowitz, EOQ and inflation uncertainty,, International Journal of Prod. Econ., 65 (2000), 217. doi: 10.1016/S0925-5273(99)00034-1.

[29]

K. L. Hou and L. C. Lin, Optimal pricing and ordering policies for deteriorating items with multivariate demand under trade credit and inflation,, OPSEARCH, 50 (2013), 404. doi: 10.1007/s12597-012-0115-0.

[30]

T. P. Hsieh and C. Y. Dye, Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation,, Expert Syst. with Appl., 37 (2010), 7234. doi: 10.1016/j.eswa.2010.04.004.

[31]

C. K. Jaggi, K. K. Aggarwal and S. K. Goel, Optimal order policy for deteriorating items with inflation induced demand,, Int. J. Prod. Econ., 103 (2006), 707. doi: 10.1016/j.ijpe.2006.01.004.

[32]

R. Maihami and I. Nakhai Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand,, Int. J. Prod. Econ., 136 (2012), 116. doi: 10.1016/j.ijpe.2011.09.020.

[33]

R. Maihami and I. Nakhai Kamalabadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging,, Math. and Comp. Modelling, 55 (2012), 1722. doi: 10.1016/j.mcm.2011.11.017.

[34]

A. Mirzazadeh, M. M. Seyed-Esfehani and S. M. T. Fatemi-Ghomi, An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages,, Internat. J. of Systems Sci., 40 (2009), 21. doi: 10.1080/00207720802088264.

[35]

R. B. Misra, A note on optimal inventory management under inflation,, Naval Res. Logist. Quart., 26 (1979), 161. doi: 10.1002/nav.3800260116.

[36]

I. Moon and S. Lee, The effects of inflation and time value of money on an economic order quantity with a random product life cycle,, Eur. J. Oper. Res., 125 (2000), 588. doi: 10.1016/S0377-2217(99)00270-2.

[37]

I. Moon, B. C. Giri and B. Ko, Order quantity models for ameliorating/deteriorating items under inflation and time discounting,, Eur. J. Oper. Res., 162 (2005), 773. doi: 10.1016/j.ejor.2003.09.025.

[38]

A. Musa and B. Sani, Inventory ordering policies of delayed deteriorating items under permissible delay in payments,, Internat. J. of Prod. Econ., 136 (2012), 75. doi: 10.1016/j.ijpe.2011.09.013.

[39]

L. Y. Ouyang, K. S. Wu and C. T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments,, Comp. and Indust. Eng., 51 (2006), 637. doi: 10.1016/j.cie.2006.07.012.

[40]

L. Y. Ouyang, H. F. Yen and K. L. Lee, Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase,, Journal of Industrial and Management Optimization, 9 (2013), 437. doi: 10.3934/jimo.2013.9.437.

[41]

K. S. Park, Inflationary effect on EOQ under trade-credit financing,, International Journal on Policy and Information, 10 (1986), 65.

[42]

F. Samadi, A. Mirzazadeh and M. M. Pedram, Marketing and service planning in a fuzzy inventory model: A geometric programming approach,, Applied Mathematical Modelling, 37 (2013), 6683. doi: 10.1016/j.apm.2012.12.020.

[43]

B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Applied Mathematics and Computation, 217 (2011), 6159. doi: 10.1016/j.amc.2010.12.098.

[44]

B. Sarkar, S. S. Sana and K. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money-An EMQ model,, Expert Systems with Applications, 38 (2011), 13543. doi: 10.1016/j.eswa.2011.04.044.

[45]

B. R. Sarker, S. Mukherjee and C. V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration,, Int. J. Prod. Eco., 48 (1997), 227. doi: 10.1016/S0925-5273(96)00107-7.

[46]

B. R. Sarker and H. Pan, Effects of inflation and time value of money on order quantity and allowable shortage,, Internat. J. of Prod. Managem., 34 (1994), 65. doi: 10.1016/0925-5273(94)90047-7.

[47]

J. Shi, G. Zhang and K. K. Lai, Ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 151. doi: 10.1080/02331934.2011.590485.

[48]

J. Taheri-Tolgari, A. Mirzazadeh and F. Jolai, An inventory model for imperfect items under inflationary conditions with considering inspection errors,, Computers and Mathematics with Applications, 63 (2012), 1007. doi: 10.1016/j.camwa.2011.09.050.

[49]

Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments,, Comput. and Oper. Res., 35 (2008), 3562. doi: 10.1016/j.cor.2007.01.024.

[50]

H. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,, Comp. Oper. Res., 22 (1995), 345.

[51]

H. M. Wee and S. T. Law, Replenishment and Pricing Policy for Deteriorating Items Taking into Account the Time Value of Money,, Internat. J. Prod. Econ., 71 (2001), 213. doi: 10.1016/S0925-5273(00)00121-3.

[52]

K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging,, Internat. J. of Prod. Econ., 101 (2006), 369. doi: 10.1016/j.ijpe.2005.01.010.

[53]

C. T. Yang, L. Y. Quyang and H. H. Wu, Retailers optimal pricing and ordering policies for Non-instantaneous deteriorating items with price-dependent demand and partial backlogging,, Math. Problems in Eng., 2009 (2009). doi: 10.1155/2009/198305.

[54]

J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment,, Journal of Industrial and Management Optimization, 10 (2014), 1261. doi: 10.3934/jimo.2014.10.1261.

[55]

S. X. Zhu, Joint pricing and inventory replenishment decisions with returns and expediting,, Eur. J. Oper. Res., 216 (2012), 105. doi: 10.1016/j.ejor.2011.07.024.

show all references

References:
[1]

P. L. Abad, Optimal pricing and lot sizing under conditions of perishability and partial backordering,, Managem. Sci., 42 (1996), 1093. doi: 10.1287/mnsc.42.8.1093.

[2]

P. L. Abad, Optimal price and order size for a reseller under partial backordering,, Comp. and Oper. Res., 28 (2001), 53. doi: 10.1016/S0305-0548(99)00086-6.

[3]

E. T. Anderson, K. Hansen, D. Simister and L. K. Wang, How are demand and returns related? Theory and empirical evidence,, Working paper, (2006).

[4]

A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma, A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging,, Applied Mathematics and Computation, 232 (2014), 1125. doi: 10.1016/j.amc.2014.01.115.

[5]

J. A. Buzacott, Economic order quantity with inflation,, Operational Quarterly, 26 (1975), 553. doi: 10.2307/3008214.

[6]

C. T. Chang, J. T. Teng and S. K. Goyal, Optimal replenishment policies for non instantaneous deteriorating items with stock-dependent demand. Internat,, J. of Prod. Econ, 123 (2010), 62.

[7]

H. J. Chang, J. T. Teng, L. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging,, Eur. J. Oper. Res., 168 (2005), 51. doi: 10.1016/j.ejor.2004.05.003.

[8]

J. Chen and P. C. Bell, The impact of customer returns on pricing and order decisions,, Eur. J. Oper. Res., 195 (2009), 280. doi: 10.1016/j.ejor.2008.01.030.

[9]

R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration,, AIIE Trans., 5 (1973), 323. doi: 10.1080/05695557308974918.

[10]

T. K. Datta and A. K. Pal, Effects of inflation and time value of money on an inventory model with linear time-dependent demand rate and shortages,, Eur. J. Oper. Res., 52 (1991), 326. doi: 10.1016/0377-2217(91)90167-T.

[11]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging,, Omega, 35 (2007), 184. doi: 10.1016/j.omega.2005.05.002.

[12]

C. Y. Dye, L. Y. Quyang and T. P. Hsieh, Inventory and pricing strategy for deteriorating items with shortages: A discounted cash flow approach,, Comput. and Industrial Engineering, 52 (2007), 29. doi: 10.1016/j.cie.2006.10.009.

[13]

K. V. Geetha and R. Uthayakumar, Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments,, J. of Comp. and Appl. Math., 223 (2010), 2492. doi: 10.1016/j.cam.2009.10.031.

[14]

P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system,, Internat. J. of Prod. Res., 21 (1963), 449.

[15]

A. Gholami-Qadikolaei, A. Mirzazadeh and R. Tavakkoli-Moghaddam, A stochastic multiobjective multiconstraint inventory model under inflationary condition and different inspection scenarios,, Proceedings of the Institution of Mechanical Engineers, 227 (2013), 1057. doi: 10.1177/0954405413481452.

[16]

M. Ghoreishi, A. Arshsadi-Khamseh and A. Mirzazadeh, Joint Optimal Pricing and Inventory Control for Deteriorating Items under Inflation and Customer Returns,, Journal of Industrial Engineering, 2013 (2013). doi: 10.1155/2013/709083.

[17]

M. Ghoreishi, A. Mirzazadeh and G. W. Weber, Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns,, Optimization, 63 (2014), 1785. doi: 10.1080/02331934.2013.853059.

[18]

M. Ghoreishi, A. Mirzazadeh and I. Nakhai-Kamalabadi, Optimal pricing and lot-sizing policies for an economic production quantity model with non-instantaneous deteriorating items, permissible delay in payments, customer returns, and inflation,, to appear in Proceedings of the Institution of Mechanical Engineers, (2014). doi: 10.1177/0954405414522215.

[19]

B. H. Gilding, Inflation and the optimal inventory replenishment schedule within a finite planning horizon,, European Journal of Operational Research, 234 (2014), 683. doi: 10.1016/j.ejor.2013.11.001.

[20]

S. Goal, Y. P. Gupta and C. R. Bector, Impact of inflation on economic quantity discount schedules to increase vendor profits,, Internat. J. of Systems Sci., 22 (1991), 197. doi: 10.1080/00207729108910600.

[21]

S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory,, Eur. J. Oper. Res., 134 (2001), 1. doi: 10.1016/S0377-2217(00)00248-4.

[22]

A. Guria, B. Das, S. Mondal and M. Maiti, Inventory policy for an item with inflation induced purchasing price, selling price and demand with immediate part payment,, Applied Mathematical Modeling, 37 (2013), 240. doi: 10.1016/j.apm.2012.02.010.

[23]

R. W. Hall, Price changes and order quantities: Impacts of discount rate and storage costs,, IIE Trans., 24 (1992), 104. doi: 10.1080/07408179208964207.

[24]

M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand,, J. Oper. Res. Soc., 47 (1996), 1228. doi: 10.2307/3010036.

[25]

M. A. Hariga and M. Ben-Daya, Optimal time varying lot sizing models under inflationary conditions,, Eur. J. Oper. Res., 89 (1996), 313. doi: 10.1016/0377-2217(94)00256-8.

[26]

K. J. Heng, J. Labban and R. J. Linn, An order-level lot-size inventory model for deteriorating items with finite replenishment rate,, Comp. Ind. Eng., 20 (1991), 187.

[27]

J. Hess and G. Mayhew, Modeling merchandise returns in direct marketing,, J. of Direct Marketing, 11 (1997), 20. doi: 10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.3.CO;2-0.

[28]

I. Horowitz, EOQ and inflation uncertainty,, International Journal of Prod. Econ., 65 (2000), 217. doi: 10.1016/S0925-5273(99)00034-1.

[29]

K. L. Hou and L. C. Lin, Optimal pricing and ordering policies for deteriorating items with multivariate demand under trade credit and inflation,, OPSEARCH, 50 (2013), 404. doi: 10.1007/s12597-012-0115-0.

[30]

T. P. Hsieh and C. Y. Dye, Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation,, Expert Syst. with Appl., 37 (2010), 7234. doi: 10.1016/j.eswa.2010.04.004.

[31]

C. K. Jaggi, K. K. Aggarwal and S. K. Goel, Optimal order policy for deteriorating items with inflation induced demand,, Int. J. Prod. Econ., 103 (2006), 707. doi: 10.1016/j.ijpe.2006.01.004.

[32]

R. Maihami and I. Nakhai Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand,, Int. J. Prod. Econ., 136 (2012), 116. doi: 10.1016/j.ijpe.2011.09.020.

[33]

R. Maihami and I. Nakhai Kamalabadi, Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging,, Math. and Comp. Modelling, 55 (2012), 1722. doi: 10.1016/j.mcm.2011.11.017.

[34]

A. Mirzazadeh, M. M. Seyed-Esfehani and S. M. T. Fatemi-Ghomi, An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages,, Internat. J. of Systems Sci., 40 (2009), 21. doi: 10.1080/00207720802088264.

[35]

R. B. Misra, A note on optimal inventory management under inflation,, Naval Res. Logist. Quart., 26 (1979), 161. doi: 10.1002/nav.3800260116.

[36]

I. Moon and S. Lee, The effects of inflation and time value of money on an economic order quantity with a random product life cycle,, Eur. J. Oper. Res., 125 (2000), 588. doi: 10.1016/S0377-2217(99)00270-2.

[37]

I. Moon, B. C. Giri and B. Ko, Order quantity models for ameliorating/deteriorating items under inflation and time discounting,, Eur. J. Oper. Res., 162 (2005), 773. doi: 10.1016/j.ejor.2003.09.025.

[38]

A. Musa and B. Sani, Inventory ordering policies of delayed deteriorating items under permissible delay in payments,, Internat. J. of Prod. Econ., 136 (2012), 75. doi: 10.1016/j.ijpe.2011.09.013.

[39]

L. Y. Ouyang, K. S. Wu and C. T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments,, Comp. and Indust. Eng., 51 (2006), 637. doi: 10.1016/j.cie.2006.07.012.

[40]

L. Y. Ouyang, H. F. Yen and K. L. Lee, Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase,, Journal of Industrial and Management Optimization, 9 (2013), 437. doi: 10.3934/jimo.2013.9.437.

[41]

K. S. Park, Inflationary effect on EOQ under trade-credit financing,, International Journal on Policy and Information, 10 (1986), 65.

[42]

F. Samadi, A. Mirzazadeh and M. M. Pedram, Marketing and service planning in a fuzzy inventory model: A geometric programming approach,, Applied Mathematical Modelling, 37 (2013), 6683. doi: 10.1016/j.apm.2012.12.020.

[43]

B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Applied Mathematics and Computation, 217 (2011), 6159. doi: 10.1016/j.amc.2010.12.098.

[44]

B. Sarkar, S. S. Sana and K. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money-An EMQ model,, Expert Systems with Applications, 38 (2011), 13543. doi: 10.1016/j.eswa.2011.04.044.

[45]

B. R. Sarker, S. Mukherjee and C. V. Balan, An order-level lot size inventory model with inventory-level dependent demand and deterioration,, Int. J. Prod. Eco., 48 (1997), 227. doi: 10.1016/S0925-5273(96)00107-7.

[46]

B. R. Sarker and H. Pan, Effects of inflation and time value of money on order quantity and allowable shortage,, Internat. J. of Prod. Managem., 34 (1994), 65. doi: 10.1016/0925-5273(94)90047-7.

[47]

J. Shi, G. Zhang and K. K. Lai, Ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 151. doi: 10.1080/02331934.2011.590485.

[48]

J. Taheri-Tolgari, A. Mirzazadeh and F. Jolai, An inventory model for imperfect items under inflationary conditions with considering inspection errors,, Computers and Mathematics with Applications, 63 (2012), 1007. doi: 10.1016/j.camwa.2011.09.050.

[49]

Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments,, Comput. and Oper. Res., 35 (2008), 3562. doi: 10.1016/j.cor.2007.01.024.

[50]

H. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,, Comp. Oper. Res., 22 (1995), 345.

[51]

H. M. Wee and S. T. Law, Replenishment and Pricing Policy for Deteriorating Items Taking into Account the Time Value of Money,, Internat. J. Prod. Econ., 71 (2001), 213. doi: 10.1016/S0925-5273(00)00121-3.

[52]

K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging,, Internat. J. of Prod. Econ., 101 (2006), 369. doi: 10.1016/j.ijpe.2005.01.010.

[53]

C. T. Yang, L. Y. Quyang and H. H. Wu, Retailers optimal pricing and ordering policies for Non-instantaneous deteriorating items with price-dependent demand and partial backlogging,, Math. Problems in Eng., 2009 (2009). doi: 10.1155/2009/198305.

[54]

J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment,, Journal of Industrial and Management Optimization, 10 (2014), 1261. doi: 10.3934/jimo.2014.10.1261.

[55]

S. X. Zhu, Joint pricing and inventory replenishment decisions with returns and expediting,, Eur. J. Oper. Res., 216 (2012), 105. doi: 10.1016/j.ejor.2011.07.024.

[1]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[2]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002

[3]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-29. doi: 10.3934/jimo.2018098

[4]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[5]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-27. doi: 10.3934/jimo.2018096

[6]

Jianxiong Zhang, Zhenyu Bai, Wansheng Tang. Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1261-1277. doi: 10.3934/jimo.2014.10.1261

[7]

Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

[8]

Javad Taheri-Tolgari, Mohammad Mohammadi, Bahman Naderi, Alireza Arshadi-Khamseh, Abolfazl Mirzazadeh. An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-28. doi: 10.3934/jimo.2018097

[9]

Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083

[10]

Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153

[11]

Konstantina Skouri, Ioannis Konstantaras. Two-warehouse inventory models for deteriorating products with ramp type demand rate. Journal of Industrial & Management Optimization, 2013, 9 (4) : 855-883. doi: 10.3934/jimo.2013.9.855

[12]

Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091

[13]

Yu-Chung Tsao. Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits. Journal of Industrial & Management Optimization, 2017, 13 (1) : 329-347. doi: 10.3934/jimo.2016020

[14]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013

[15]

Shuren Liu, Qiying Hu, Yifan Xu. Optimal inventory control with fixed ordering cost for selling by internet auctions. Journal of Industrial & Management Optimization, 2012, 8 (1) : 19-40. doi: 10.3934/jimo.2012.8.19

[16]

Jingming Pan, Wenqing Shi, Xiaowo Tang. Pricing and ordering strategies of supply chain with selling gift cards. Journal of Industrial & Management Optimization, 2018, 14 (1) : 349-369. doi: 10.3934/jimo.2017050

[17]

Cheng-Kang Chen, Yi-Xiang Liao. A deteriorating inventory model for an intermediary firm under return on inventory investment maximization. Journal of Industrial & Management Optimization, 2014, 10 (4) : 989-1000. doi: 10.3934/jimo.2014.10.989

[18]

Mahdi Karimi, Seyed Jafar Sadjadi, Alireza Ghasemi Bijaghini. An economic order quantity for deteriorating items with allowable rework of deteriorated products. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2018126

[19]

Jing Shi, Tiaojun Xiao. Service investment and consumer returns policy in a vendor-managed inventory supply chain. Journal of Industrial & Management Optimization, 2015, 11 (2) : 439-459. doi: 10.3934/jimo.2015.11.439

[20]

Xuemei Zhang, Malin Song, Guangdong Liu. Service product pricing strategies based on time-sensitive customer choice behavior. Journal of Industrial & Management Optimization, 2017, 13 (1) : 297-312. doi: 10.3934/jimo.2016018

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (5)

[Back to Top]