July  2015, 11(3): 985-998. doi: 10.3934/jimo.2015.11.985

Electricity day-ahead markets: Computation of Nash equilibria

1. 

Faculdade de Ciências, Universidade do Porto and INESC TEC, Rua do Campo Alegre, 4169-007 Porto, Portugal, Portugal

2. 

Faculdade de Engenharia, Universidade do Porto and INESC TEC, Rua Dr. Roberto Frias, 4200 - 465 Porto, Portugal

Received  May 2012 Revised  June 2014 Published  October 2014

In a restructured electricity sector, day-ahead markets can be modeled as a game where some players - the producers - submit their proposals. To analyze the companies' behavior we have used the concept of Nash equilibrium as a solution in these multi-agent interaction problems. In this paper, we present new and crucial adaptations of two well-known mechanisms, the adjustment process and the relaxation algorithm, in order to achieve the goal of computing Nash equilibria. The advantages of these approaches are highlighted and compared with those available in the literature.
Citation: Margarida Carvalho, João Pedro Pedroso, João Saraiva. Electricity day-ahead markets: Computation of Nash equilibria. Journal of Industrial and Management Optimization, 2015, 11 (3) : 985-998. doi: 10.3934/jimo.2015.11.985
References:
[1]

P. Bajpai and S. N. Singh, Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market, Power Systems, IEEE Transactions on, 22 (2007), 2152-2160. doi: 10.1109/TPWRS.2007.907445.

[2]

A. G. Bakirtzis, N. P. Ziogos, A. C. Tellidou and G. A. Bakirtzis, Electricity producer offering strategies in day-ahead energy market with step-wise offers, Power Systems, IEEE Transactions on, 22 (2007), 1804-1818. doi: 10.1109/TPWRS.2007.907536.

[3]

T. Barforoushi, M. P. Moghaddam, M. H. Javidi and M. K. Sheikh-El-Eslami, Evaluation of regulatory impacts on dynamic behavior of investments in electricity markets: A new hybrid dp/game framework, Power Systems, IEEE Transactions on, 25 (2010), 1978-1986. doi: 10.1109/TPWRS.2010.2049034.

[4]

L. A. Barroso, R. D. Carneiro, S. Granville, M. V. Pereira and M. H. C. Fampa, Nash equilibrium in strategic bidding: A binary expansion approach, Power Systems, IEEE Transactions on, 21 (2006), 629-638. doi: 10.1109/TPWRS.2006.873127.

[5]

M. Carvalho, J. P. Pedroso and J. Saraiva, Nash equilibria in electricity markets, In The Proceedings of the VII ALIO/EURO Workshop on Applied Combinatorial Optimization,, pages 153-156, Porto, Portugal, May 2011.

[6]

A. Conejo and F. Prieto, Mathematical programming and electricity markets, TOP, 9 (2001), 1-54. doi: 10.1007/BF02579062.

[7]

J. Contreras, M. Klusch and J. B. Krawczyk, Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets, Power Systems, IEEE Transactions on, 19 (2004), 195-206. doi: 10.1109/TPWRS.2003.820692.

[8]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, 4OR: A Quarterly Journal of Operations Research, 5 (2007), 173-210. doi: 10.1007/s10288-007-0054-4.

[9]

D. Fudenberg and J. Tirole, Game Theory, MIT Press, Cambridge, MA, 5th edition, 1996.

[10]

B. A. Gomes, Simulador dos operadores de mercado e sistema num mercado de energia eléctrica considerando restriçøes intertemporais, Master's thesis, Faculdade de Engenharia da Universidade do Porto, Portugal, 2005.

[11]

E. Hasan and F. D. Galiana, Fast computation of pure strategy Nash equilibria in electricity markets cleared by merit order, Power Systems, IEEE Transactions on, 25 (2010), 722-728. doi: 10.1109/TPWRS.2009.2037153.

[12]

B. F. Hobbs, C. B. Metzler and J. -S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach, Power Systems, IEEE Transactions on, 15 (2000), 638-645. doi: 10.1109/59.867153.

[13]

J. Krawczyk and J. Zuccollo, Nira-3: An improved Matlab package for finding Nash equilibria in infinite games, Computational Economics, 5 (2006), 24644. URL http://mpra.ub.uni-muenchen.de/1119/.

[14]

K. Lee and R. Baldick, Tuning of discretization in bimatrix game approach to power system market analysis, Power Engineering Review, IEEE, 22 (2002), p55. doi: 10.1109/MPER.2002.4311811.

[15]

M. V. Pereira, S. Granville, M. H. C. Fampa, R. Dix and L. A. Barroso, Strategic bidding under uncertainty: A binary expansion approach, Power Systems, IEEE Transactions on, 20 (2005), 180-188. doi: 10.1109/TPWRS.2004.840397.

[16]

D. Pozo and J. Contreras, Finding multiple Nash equilibria in pool-based markets: A stochastic EPEC approach, Power Systems, IEEE Transactions on, 26 (2011), 1744-1752. doi: 10.1109/TPWRS.2010.2098425.

[17]

D. Pozo, J. Contreras, Á. Caballero and A. de Andrés, Long-term Nash equilibria in electricity markets, Electric Power Systems Research, 81 (2011), 329-339. doi: 10.1016/j.epsr.2010.09.008.

[18]

J. Saraiva, J. P. da Silva and M. P. de Leão, Mercados de Electricidade - Regulaçcão de Tarifação de Uso das Redes, FEUPedições, 2002.

[19]

Y. S. Son and R. Baldick, Hybrid coevolutionary programming for Nash equilibrium search in games with local optima, Evolutionary Computation, IEEE Transactions on, 8 (2004), 305-315. doi: 10.1109/TEVC.2004.832862.

[20]

A. Vaz and L. Vicente, A particle swarm pattern search method for bound constrained global optimization, Journal of Global Optimization, 39 (2007), 197-219. doi: 10.1007/s10898-007-9133-5.

show all references

References:
[1]

P. Bajpai and S. N. Singh, Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market, Power Systems, IEEE Transactions on, 22 (2007), 2152-2160. doi: 10.1109/TPWRS.2007.907445.

[2]

A. G. Bakirtzis, N. P. Ziogos, A. C. Tellidou and G. A. Bakirtzis, Electricity producer offering strategies in day-ahead energy market with step-wise offers, Power Systems, IEEE Transactions on, 22 (2007), 1804-1818. doi: 10.1109/TPWRS.2007.907536.

[3]

T. Barforoushi, M. P. Moghaddam, M. H. Javidi and M. K. Sheikh-El-Eslami, Evaluation of regulatory impacts on dynamic behavior of investments in electricity markets: A new hybrid dp/game framework, Power Systems, IEEE Transactions on, 25 (2010), 1978-1986. doi: 10.1109/TPWRS.2010.2049034.

[4]

L. A. Barroso, R. D. Carneiro, S. Granville, M. V. Pereira and M. H. C. Fampa, Nash equilibrium in strategic bidding: A binary expansion approach, Power Systems, IEEE Transactions on, 21 (2006), 629-638. doi: 10.1109/TPWRS.2006.873127.

[5]

M. Carvalho, J. P. Pedroso and J. Saraiva, Nash equilibria in electricity markets, In The Proceedings of the VII ALIO/EURO Workshop on Applied Combinatorial Optimization,, pages 153-156, Porto, Portugal, May 2011.

[6]

A. Conejo and F. Prieto, Mathematical programming and electricity markets, TOP, 9 (2001), 1-54. doi: 10.1007/BF02579062.

[7]

J. Contreras, M. Klusch and J. B. Krawczyk, Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets, Power Systems, IEEE Transactions on, 19 (2004), 195-206. doi: 10.1109/TPWRS.2003.820692.

[8]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, 4OR: A Quarterly Journal of Operations Research, 5 (2007), 173-210. doi: 10.1007/s10288-007-0054-4.

[9]

D. Fudenberg and J. Tirole, Game Theory, MIT Press, Cambridge, MA, 5th edition, 1996.

[10]

B. A. Gomes, Simulador dos operadores de mercado e sistema num mercado de energia eléctrica considerando restriçøes intertemporais, Master's thesis, Faculdade de Engenharia da Universidade do Porto, Portugal, 2005.

[11]

E. Hasan and F. D. Galiana, Fast computation of pure strategy Nash equilibria in electricity markets cleared by merit order, Power Systems, IEEE Transactions on, 25 (2010), 722-728. doi: 10.1109/TPWRS.2009.2037153.

[12]

B. F. Hobbs, C. B. Metzler and J. -S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach, Power Systems, IEEE Transactions on, 15 (2000), 638-645. doi: 10.1109/59.867153.

[13]

J. Krawczyk and J. Zuccollo, Nira-3: An improved Matlab package for finding Nash equilibria in infinite games, Computational Economics, 5 (2006), 24644. URL http://mpra.ub.uni-muenchen.de/1119/.

[14]

K. Lee and R. Baldick, Tuning of discretization in bimatrix game approach to power system market analysis, Power Engineering Review, IEEE, 22 (2002), p55. doi: 10.1109/MPER.2002.4311811.

[15]

M. V. Pereira, S. Granville, M. H. C. Fampa, R. Dix and L. A. Barroso, Strategic bidding under uncertainty: A binary expansion approach, Power Systems, IEEE Transactions on, 20 (2005), 180-188. doi: 10.1109/TPWRS.2004.840397.

[16]

D. Pozo and J. Contreras, Finding multiple Nash equilibria in pool-based markets: A stochastic EPEC approach, Power Systems, IEEE Transactions on, 26 (2011), 1744-1752. doi: 10.1109/TPWRS.2010.2098425.

[17]

D. Pozo, J. Contreras, Á. Caballero and A. de Andrés, Long-term Nash equilibria in electricity markets, Electric Power Systems Research, 81 (2011), 329-339. doi: 10.1016/j.epsr.2010.09.008.

[18]

J. Saraiva, J. P. da Silva and M. P. de Leão, Mercados de Electricidade - Regulaçcão de Tarifação de Uso das Redes, FEUPedições, 2002.

[19]

Y. S. Son and R. Baldick, Hybrid coevolutionary programming for Nash equilibrium search in games with local optima, Evolutionary Computation, IEEE Transactions on, 8 (2004), 305-315. doi: 10.1109/TEVC.2004.832862.

[20]

A. Vaz and L. Vicente, A particle swarm pattern search method for bound constrained global optimization, Journal of Global Optimization, 39 (2007), 197-219. doi: 10.1007/s10898-007-9133-5.

[1]

Didier Aussel, Rafael Correa, Matthieu Marechal. Electricity spot market with transmission losses. Journal of Industrial and Management Optimization, 2013, 9 (2) : 275-290. doi: 10.3934/jimo.2013.9.275

[2]

Jinling Zhao, Wei Chen, Su Zhang. Immediate schedule adjustment and semidefinite relaxation. Journal of Industrial and Management Optimization, 2019, 15 (2) : 633-645. doi: 10.3934/jimo.2018062

[3]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[4]

Carlos Hervés-Beloso, Emma Moreno-García. Market games and walrasian equilibria. Journal of Dynamics and Games, 2020, 7 (1) : 65-77. doi: 10.3934/jdg.2020004

[5]

Jinying Ma, Honglei Xu. Empirical analysis and optimization of capital structure adjustment. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1037-1047. doi: 10.3934/jimo.2018191

[6]

Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1269-1287. doi: 10.3934/jimo.2020021

[7]

Liangliang Sun, Fangjun Luan, Yu Ying, Kun Mao. Rescheduling optimization of steelmaking-continuous casting process based on the Lagrangian heuristic algorithm. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1431-1448. doi: 10.3934/jimo.2016081

[8]

Renato Bruni, Gianpiero Bianchi, Alessandra Reale. A combinatorial optimization approach to the selection of statistical units. Journal of Industrial and Management Optimization, 2016, 12 (2) : 515-527. doi: 10.3934/jimo.2016.12.515

[9]

Athanasios Kehagias. A note on the Nash equilibria of some multi-player reachability/safety games. Journal of Dynamics and Games, 2022, 9 (1) : 117-122. doi: 10.3934/jdg.2021028

[10]

Simone Göttlich, Oliver Kolb, Sebastian Kühn. Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks and Heterogeneous Media, 2014, 9 (2) : 315-334. doi: 10.3934/nhm.2014.9.315

[11]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics and Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[12]

Alejandra Fonseca-Morales, Onésimo Hernández-Lerma. A note on differential games with Pareto-optimal NASH equilibria: Deterministic and stochastic models. Journal of Dynamics and Games, 2017, 4 (3) : 195-203. doi: 10.3934/jdg.2017012

[13]

Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial and Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71

[14]

Anwa Zhou, Jinyan Fan. A semidefinite relaxation algorithm for checking completely positive separable matrices. Journal of Industrial and Management Optimization, 2019, 15 (2) : 893-908. doi: 10.3934/jimo.2018076

[15]

Yong Xia, Yu-Jun Gong, Sheng-Nan Han. A new semidefinite relaxation for $L_{1}$-constrained quadratic optimization and extensions. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 185-195. doi: 10.3934/naco.2015.5.185

[16]

Valery Y. Glizer, Vladimir Turetsky, Emil Bashkansky. Statistical process control optimization with variable sampling interval and nonlinear expected loss. Journal of Industrial and Management Optimization, 2015, 11 (1) : 105-133. doi: 10.3934/jimo.2015.11.105

[17]

Qiong Liu, Jialiang Liu, Zhaorui Dong, Mengmeng Zhan, Zhen Mei, Baosheng Ying, Xinyu Shao. Integrated optimization of process planning and scheduling for reducing carbon emissions. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1025-1055. doi: 10.3934/jimo.2020010

[18]

Ning Chen, Yan Xia Zhao, Jia Yang Dai, Yu Qian Guo, Wei Hua Gui, Jun Jie Peng. Hybrid modeling and distributed optimization control method for the iron removal process. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022003

[19]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[20]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial and Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (1)

[Back to Top]