2015, 11(3): 985-998. doi: 10.3934/jimo.2015.11.985

Electricity day-ahead markets: Computation of Nash equilibria

1. 

Faculdade de Ciências, Universidade do Porto and INESC TEC, Rua do Campo Alegre, 4169-007 Porto, Portugal, Portugal

2. 

Faculdade de Engenharia, Universidade do Porto and INESC TEC, Rua Dr. Roberto Frias, 4200 - 465 Porto, Portugal

Received  May 2012 Revised  June 2014 Published  October 2014

In a restructured electricity sector, day-ahead markets can be modeled as a game where some players - the producers - submit their proposals. To analyze the companies' behavior we have used the concept of Nash equilibrium as a solution in these multi-agent interaction problems. In this paper, we present new and crucial adaptations of two well-known mechanisms, the adjustment process and the relaxation algorithm, in order to achieve the goal of computing Nash equilibria. The advantages of these approaches are highlighted and compared with those available in the literature.
Citation: Margarida Carvalho, João Pedro Pedroso, João Saraiva. Electricity day-ahead markets: Computation of Nash equilibria. Journal of Industrial & Management Optimization, 2015, 11 (3) : 985-998. doi: 10.3934/jimo.2015.11.985
References:
[1]

P. Bajpai and S. N. Singh, Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market,, Power Systems, 22 (2007), 2152. doi: 10.1109/TPWRS.2007.907445.

[2]

A. G. Bakirtzis, N. P. Ziogos, A. C. Tellidou and G. A. Bakirtzis, Electricity producer offering strategies in day-ahead energy market with step-wise offers,, Power Systems, 22 (2007), 1804. doi: 10.1109/TPWRS.2007.907536.

[3]

T. Barforoushi, M. P. Moghaddam, M. H. Javidi and M. K. Sheikh-El-Eslami, Evaluation of regulatory impacts on dynamic behavior of investments in electricity markets: A new hybrid dp/game framework,, Power Systems, 25 (2010), 1978. doi: 10.1109/TPWRS.2010.2049034.

[4]

L. A. Barroso, R. D. Carneiro, S. Granville, M. V. Pereira and M. H. C. Fampa, Nash equilibrium in strategic bidding: A binary expansion approach,, Power Systems, 21 (2006), 629. doi: 10.1109/TPWRS.2006.873127.

[5]

M. Carvalho, J. P. Pedroso and J. Saraiva, Nash equilibria in electricity markets,, In The Proceedings of the VII ALIO/EURO Workshop on Applied Combinatorial Optimization, (2011), 153.

[6]

A. Conejo and F. Prieto, Mathematical programming and electricity markets,, TOP, 9 (2001), 1. doi: 10.1007/BF02579062.

[7]

J. Contreras, M. Klusch and J. B. Krawczyk, Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets,, Power Systems, 19 (2004), 195. doi: 10.1109/TPWRS.2003.820692.

[8]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems,, 4OR: A Quarterly Journal of Operations Research, 5 (2007), 173. doi: 10.1007/s10288-007-0054-4.

[9]

D. Fudenberg and J. Tirole, Game Theory,, MIT Press, (1996).

[10]

B. A. Gomes, Simulador dos operadores de mercado e sistema num mercado de energia eléctrica considerando restriçøes intertemporais,, Master's thesis, (2005).

[11]

E. Hasan and F. D. Galiana, Fast computation of pure strategy Nash equilibria in electricity markets cleared by merit order,, Power Systems, 25 (2010), 722. doi: 10.1109/TPWRS.2009.2037153.

[12]

B. F. Hobbs, C. B. Metzler and J. -S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, Power Systems, 15 (2000), 638. doi: 10.1109/59.867153.

[13]

J. Krawczyk and J. Zuccollo, Nira-3: An improved Matlab package for finding Nash equilibria in infinite games,, Computational Economics, 5 (2006).

[14]

K. Lee and R. Baldick, Tuning of discretization in bimatrix game approach to power system market analysis,, Power Engineering Review, 22 (2002). doi: 10.1109/MPER.2002.4311811.

[15]

M. V. Pereira, S. Granville, M. H. C. Fampa, R. Dix and L. A. Barroso, Strategic bidding under uncertainty: A binary expansion approach,, Power Systems, 20 (2005), 180. doi: 10.1109/TPWRS.2004.840397.

[16]

D. Pozo and J. Contreras, Finding multiple Nash equilibria in pool-based markets: A stochastic EPEC approach,, Power Systems, 26 (2011), 1744. doi: 10.1109/TPWRS.2010.2098425.

[17]

D. Pozo, J. Contreras, Á. Caballero and A. de Andrés, Long-term Nash equilibria in electricity markets,, Electric Power Systems Research, 81 (2011), 329. doi: 10.1016/j.epsr.2010.09.008.

[18]

J. Saraiva, J. P. da Silva and M. P. de Leão, Mercados de Electricidade - Regulaçcão de Tarifação de Uso das Redes,, FEUPedições, (2002).

[19]

Y. S. Son and R. Baldick, Hybrid coevolutionary programming for Nash equilibrium search in games with local optima,, Evolutionary Computation, 8 (2004), 305. doi: 10.1109/TEVC.2004.832862.

[20]

A. Vaz and L. Vicente, A particle swarm pattern search method for bound constrained global optimization,, Journal of Global Optimization, 39 (2007), 197. doi: 10.1007/s10898-007-9133-5.

show all references

References:
[1]

P. Bajpai and S. N. Singh, Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market,, Power Systems, 22 (2007), 2152. doi: 10.1109/TPWRS.2007.907445.

[2]

A. G. Bakirtzis, N. P. Ziogos, A. C. Tellidou and G. A. Bakirtzis, Electricity producer offering strategies in day-ahead energy market with step-wise offers,, Power Systems, 22 (2007), 1804. doi: 10.1109/TPWRS.2007.907536.

[3]

T. Barforoushi, M. P. Moghaddam, M. H. Javidi and M. K. Sheikh-El-Eslami, Evaluation of regulatory impacts on dynamic behavior of investments in electricity markets: A new hybrid dp/game framework,, Power Systems, 25 (2010), 1978. doi: 10.1109/TPWRS.2010.2049034.

[4]

L. A. Barroso, R. D. Carneiro, S. Granville, M. V. Pereira and M. H. C. Fampa, Nash equilibrium in strategic bidding: A binary expansion approach,, Power Systems, 21 (2006), 629. doi: 10.1109/TPWRS.2006.873127.

[5]

M. Carvalho, J. P. Pedroso and J. Saraiva, Nash equilibria in electricity markets,, In The Proceedings of the VII ALIO/EURO Workshop on Applied Combinatorial Optimization, (2011), 153.

[6]

A. Conejo and F. Prieto, Mathematical programming and electricity markets,, TOP, 9 (2001), 1. doi: 10.1007/BF02579062.

[7]

J. Contreras, M. Klusch and J. B. Krawczyk, Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets,, Power Systems, 19 (2004), 195. doi: 10.1109/TPWRS.2003.820692.

[8]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems,, 4OR: A Quarterly Journal of Operations Research, 5 (2007), 173. doi: 10.1007/s10288-007-0054-4.

[9]

D. Fudenberg and J. Tirole, Game Theory,, MIT Press, (1996).

[10]

B. A. Gomes, Simulador dos operadores de mercado e sistema num mercado de energia eléctrica considerando restriçøes intertemporais,, Master's thesis, (2005).

[11]

E. Hasan and F. D. Galiana, Fast computation of pure strategy Nash equilibria in electricity markets cleared by merit order,, Power Systems, 25 (2010), 722. doi: 10.1109/TPWRS.2009.2037153.

[12]

B. F. Hobbs, C. B. Metzler and J. -S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, Power Systems, 15 (2000), 638. doi: 10.1109/59.867153.

[13]

J. Krawczyk and J. Zuccollo, Nira-3: An improved Matlab package for finding Nash equilibria in infinite games,, Computational Economics, 5 (2006).

[14]

K. Lee and R. Baldick, Tuning of discretization in bimatrix game approach to power system market analysis,, Power Engineering Review, 22 (2002). doi: 10.1109/MPER.2002.4311811.

[15]

M. V. Pereira, S. Granville, M. H. C. Fampa, R. Dix and L. A. Barroso, Strategic bidding under uncertainty: A binary expansion approach,, Power Systems, 20 (2005), 180. doi: 10.1109/TPWRS.2004.840397.

[16]

D. Pozo and J. Contreras, Finding multiple Nash equilibria in pool-based markets: A stochastic EPEC approach,, Power Systems, 26 (2011), 1744. doi: 10.1109/TPWRS.2010.2098425.

[17]

D. Pozo, J. Contreras, Á. Caballero and A. de Andrés, Long-term Nash equilibria in electricity markets,, Electric Power Systems Research, 81 (2011), 329. doi: 10.1016/j.epsr.2010.09.008.

[18]

J. Saraiva, J. P. da Silva and M. P. de Leão, Mercados de Electricidade - Regulaçcão de Tarifação de Uso das Redes,, FEUPedições, (2002).

[19]

Y. S. Son and R. Baldick, Hybrid coevolutionary programming for Nash equilibrium search in games with local optima,, Evolutionary Computation, 8 (2004), 305. doi: 10.1109/TEVC.2004.832862.

[20]

A. Vaz and L. Vicente, A particle swarm pattern search method for bound constrained global optimization,, Journal of Global Optimization, 39 (2007), 197. doi: 10.1007/s10898-007-9133-5.

[1]

Didier Aussel, Rafael Correa, Matthieu Marechal. Electricity spot market with transmission losses. Journal of Industrial & Management Optimization, 2013, 9 (2) : 275-290. doi: 10.3934/jimo.2013.9.275

[2]

Jinling Zhao, Wei Chen, Su Zhang. Immediate schedule adjustment and semidefinite relaxation. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-13. doi: 10.3934/jimo.2018062

[3]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[4]

Liangliang Sun, Fangjun Luan, Yu Ying, Kun Mao. Rescheduling optimization of steelmaking-continuous casting process based on the Lagrangian heuristic algorithm. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1431-1448. doi: 10.3934/jimo.2016081

[5]

Renato Bruni, Gianpiero Bianchi, Alessandra Reale. A combinatorial optimization approach to the selection of statistical units. Journal of Industrial & Management Optimization, 2016, 12 (2) : 515-527. doi: 10.3934/jimo.2016.12.515

[6]

Simone Göttlich, Oliver Kolb, Sebastian Kühn. Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks & Heterogeneous Media, 2014, 9 (2) : 315-334. doi: 10.3934/nhm.2014.9.315

[7]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[8]

Alejandra Fonseca-Morales, Onésimo Hernández-Lerma. A note on differential games with Pareto-optimal NASH equilibria: Deterministic and stochastic models. Journal of Dynamics & Games, 2017, 4 (3) : 195-203. doi: 10.3934/jdg.2017012

[9]

Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial & Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71

[10]

Anwa Zhou, Jinyan Fan. A semidefinite relaxation algorithm for checking completely positive separable matrices. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-16. doi: 10.3934/jimo.2018076

[11]

Yong Xia, Yu-Jun Gong, Sheng-Nan Han. A new semidefinite relaxation for $L_{1}$-constrained quadratic optimization and extensions. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 185-195. doi: 10.3934/naco.2015.5.185

[12]

Valery Y. Glizer, Vladimir Turetsky, Emil Bashkansky. Statistical process control optimization with variable sampling interval and nonlinear expected loss. Journal of Industrial & Management Optimization, 2015, 11 (1) : 105-133. doi: 10.3934/jimo.2015.11.105

[13]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

[14]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-24. doi: 10.3934/jimo.2018077

[15]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018142

[16]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018134

[17]

Chenchen Wu, Dachuan Xu, Xin-Yuan Zhao. An improved approximation algorithm for the $2$-catalog segmentation problem using semidefinite programming relaxation. Journal of Industrial & Management Optimization, 2012, 8 (1) : 117-126. doi: 10.3934/jimo.2012.8.117

[18]

Stephane Chretien, Paul Clarkson. A fast algorithm for the semi-definite relaxation of the state estimation problem in power grids. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018161

[19]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[20]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

[Back to Top]