November  2014, 8(4): 479-495. doi: 10.3934/amc.2014.8.479

Curves in characteristic $2$ with non-trivial $2$-torsion

1. 

Departement Wiskunde, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium

2. 

Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, Netherlands

3. 

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Received  January 2014 Revised  September 2014 Published  November 2014

Cais, Ellenberg and Zureick-Brown recently observed that over finite fields of characteristic two, all sufficiently general smooth plane projective curves of a given odd degree admit a non-trivial rational $2$-torsion point on their Jacobian. We extend their observation to curves given by Laurent polynomials with a fixed Newton polygon, provided that the polygon satisfies a certain combinatorial property. We also show that in each of these cases, if the curve is ordinary, then there is no need for the words ``sufficiently general''. Our treatment includes many classical families, such as hyperelliptic curves of odd genus and $C_{a,b}$ curves. In the hyperelliptic case, we provide alternative proofs using an explicit description of the $2$-torsion subgroup.
Citation: Wouter Castryck, Marco Streng, Damiano Testa. Curves in characteristic $2$ with non-trivial $2$-torsion. Advances in Mathematics of Communications, 2014, 8 (4) : 479-495. doi: 10.3934/amc.2014.8.479
References:
[1]

J. Symbolic Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

J. Inst. Math. Jussieu, 12 (2013), 651-676. doi: 10.1017/S1474748012000862.  Google Scholar

[3]

Discrete Comp. Geometry, 47 (2012), 496-518. doi: 10.1007/s00454-011-9376-2.  Google Scholar

[4]

W. Castryck and F. Cools, Linear pencils encoded in the Newton polygon,, preprint., ().   Google Scholar

[5]

Int. Math. Res. Pap., 2006, (2006), 1-57.  Google Scholar

[6]

Proc. London Math. Soc., 104 (2012), 1235-1270. doi: 10.1112/plms/pdr063.  Google Scholar

[7]

Algebra Number Theory, 3 (2009), 255-281. doi: 10.2140/ant.2009.3.255.  Google Scholar

[8]

Springer, 2011.  Google Scholar

[9]

in Proc. Adv. Cryptology - CRYPTO 2002, 2003, 308-323. doi: 10.1007/3-540-45455-1_25.  Google Scholar

[10]

Finite Fields App., 12 (2006), 78-102. doi: 10.1016/j.ffa.2005.01.003.  Google Scholar

[11]

Algebra Number Theory, 7 (2013), 507-532. doi: 10.2140/ant.2013.7.507.  Google Scholar

[12]

Linear Algebra Appl., 439 (2013), 2158-2166. doi: 10.1016/j.laa.2013.06.012.  Google Scholar

[13]

Amer. Math. Monthly, 116 (2009), 151-165. doi: 10.4169/193009709X469913.  Google Scholar

[14]

J. Math. Kyoto Univ., 26 (1986), 375-386.  Google Scholar

[15]

AMS, 1998.  Google Scholar

[16]

in Algorithms and Computation in Mathematics, Springer, 1999. doi: 10.1007/978-3-662-03642-6.  Google Scholar

[17]

Ph.D thesis, Katholieke Universiteit Nijmegen, 1991. Google Scholar

[18]

Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 153-172.  Google Scholar

[19]

Ann. Sci. de l'É.N.S., 4 (1971), 181-192.  Google Scholar

[20]

Math. Res. Lett., 7 (2000), 77-82. doi: 10.4310/MRL.2000.v7.n1.a7.  Google Scholar

[21]

Ann. Math., 160 (2004), 1099-1127. doi: 10.4007/annals.2004.160.1099.  Google Scholar

[22]

Ann. l'Institut Fourier, 62 (2012), 707-726. doi: 10.5802/aif.2692.  Google Scholar

[23]

Int. Math. Res. Not., 2002 (2002), 905-917. doi: 10.1155/S1073792802111160.  Google Scholar

[24]

in Oeuvres (collected papers), Springer, 1986, 544-568. Google Scholar

[25]

J. reine angew. Math., 377 (1987), 49-64. doi: 10.1515/crll.1987.377.49.  Google Scholar

[26]

Proc. Amer. Math. Soc., 134 (2006), 323-331. doi: 10.1090/S0002-9939-05-08294-8.  Google Scholar

show all references

References:
[1]

J. Symbolic Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

J. Inst. Math. Jussieu, 12 (2013), 651-676. doi: 10.1017/S1474748012000862.  Google Scholar

[3]

Discrete Comp. Geometry, 47 (2012), 496-518. doi: 10.1007/s00454-011-9376-2.  Google Scholar

[4]

W. Castryck and F. Cools, Linear pencils encoded in the Newton polygon,, preprint., ().   Google Scholar

[5]

Int. Math. Res. Pap., 2006, (2006), 1-57.  Google Scholar

[6]

Proc. London Math. Soc., 104 (2012), 1235-1270. doi: 10.1112/plms/pdr063.  Google Scholar

[7]

Algebra Number Theory, 3 (2009), 255-281. doi: 10.2140/ant.2009.3.255.  Google Scholar

[8]

Springer, 2011.  Google Scholar

[9]

in Proc. Adv. Cryptology - CRYPTO 2002, 2003, 308-323. doi: 10.1007/3-540-45455-1_25.  Google Scholar

[10]

Finite Fields App., 12 (2006), 78-102. doi: 10.1016/j.ffa.2005.01.003.  Google Scholar

[11]

Algebra Number Theory, 7 (2013), 507-532. doi: 10.2140/ant.2013.7.507.  Google Scholar

[12]

Linear Algebra Appl., 439 (2013), 2158-2166. doi: 10.1016/j.laa.2013.06.012.  Google Scholar

[13]

Amer. Math. Monthly, 116 (2009), 151-165. doi: 10.4169/193009709X469913.  Google Scholar

[14]

J. Math. Kyoto Univ., 26 (1986), 375-386.  Google Scholar

[15]

AMS, 1998.  Google Scholar

[16]

in Algorithms and Computation in Mathematics, Springer, 1999. doi: 10.1007/978-3-662-03642-6.  Google Scholar

[17]

Ph.D thesis, Katholieke Universiteit Nijmegen, 1991. Google Scholar

[18]

Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 153-172.  Google Scholar

[19]

Ann. Sci. de l'É.N.S., 4 (1971), 181-192.  Google Scholar

[20]

Math. Res. Lett., 7 (2000), 77-82. doi: 10.4310/MRL.2000.v7.n1.a7.  Google Scholar

[21]

Ann. Math., 160 (2004), 1099-1127. doi: 10.4007/annals.2004.160.1099.  Google Scholar

[22]

Ann. l'Institut Fourier, 62 (2012), 707-726. doi: 10.5802/aif.2692.  Google Scholar

[23]

Int. Math. Res. Not., 2002 (2002), 905-917. doi: 10.1155/S1073792802111160.  Google Scholar

[24]

in Oeuvres (collected papers), Springer, 1986, 544-568. Google Scholar

[25]

J. reine angew. Math., 377 (1987), 49-64. doi: 10.1515/crll.1987.377.49.  Google Scholar

[26]

Proc. Amer. Math. Soc., 134 (2006), 323-331. doi: 10.1090/S0002-9939-05-08294-8.  Google Scholar

[1]

Laurenţiu Maxim, Jörg Schürmann. Characteristic classes of singular toric varieties. Electronic Research Announcements, 2013, 20: 109-120. doi: 10.3934/era.2013.20.109

[2]

Sylvain E. Cappell, Anatoly Libgober, Laurentiu Maxim and Julius L. Shaneson. Hodge genera and characteristic classes of complex algebraic varieties. Electronic Research Announcements, 2008, 15: 1-7. doi: 10.3934/era.2008.15.1

[3]

Josep M. Miret, Jordi Pujolàs, Nicolas Thériault. Trisection for supersingular genus $2$ curves in characteristic $2$. Advances in Mathematics of Communications, 2014, 8 (4) : 375-387. doi: 10.3934/amc.2014.8.375

[4]

B. Harbourne, P. Pokora, H. Tutaj-Gasińska. On integral Zariski decompositions of pseudoeffective divisors on algebraic surfaces. Electronic Research Announcements, 2015, 22: 103-108. doi: 10.3934/era.2015.22.103

[5]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

[6]

Carlos Munuera, Wanderson Tenório, Fernando Torres. Locally recoverable codes from algebraic curves with separated variables. Advances in Mathematics of Communications, 2020, 14 (2) : 265-278. doi: 10.3934/amc.2020019

[7]

Jędrzej Śniatycki. Integral curves of derivations on locally semi-algebraic differential spaces. Conference Publications, 2003, 2003 (Special) : 827-833. doi: 10.3934/proc.2003.2003.827

[8]

Piotr Pokora, Tomasz Szemberg. Minkowski bases on algebraic surfaces with rational polyhedral pseudo-effective cone. Electronic Research Announcements, 2014, 21: 126-131. doi: 10.3934/era.2014.21.126

[9]

J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford and Masahico Saito. State-sum invariants of knotted curves and surfaces from quandle cohomology. Electronic Research Announcements, 1999, 5: 146-156.

[10]

Ryutaroh Matsumoto. Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields. Advances in Mathematics of Communications, 2019, 13 (1) : 1-10. doi: 10.3934/amc.2019001

[11]

Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405

[12]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[13]

Sonja Hohloch. Characterization of toric systems via transport costs. Journal of Geometric Mechanics, 2020, 12 (3) : 447-454. doi: 10.3934/jgm.2020027

[14]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[15]

Sonja Hohloch, Silvia Sabatini, Daniele Sepe. From compact semi-toric systems to Hamiltonian $S^1$-spaces. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 247-281. doi: 10.3934/dcds.2015.35.247

[16]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[17]

Naoki Chigira, Nobuo Iiyori and Hiroyoshi Yamaki. Nonabelian Sylow subgroups of finite groups of even order. Electronic Research Announcements, 1998, 4: 88-90.

[18]

T. Aaron Gulliver, Masaaki Harada. On the performance of optimal double circulant even codes. Advances in Mathematics of Communications, 2017, 11 (4) : 767-775. doi: 10.3934/amc.2017056

[19]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[20]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]