-
Previous Article
On the irreducibility of the hyperplane sections of Fermat varieties in $\mathbb{P}^3$ in characteristic $2$
- AMC Home
- This Issue
-
Next Article
Smoothness testing of polynomials over finite fields
Curves in characteristic $2$ with non-trivial $2$-torsion
1. | Departement Wiskunde, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium |
2. | Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, Netherlands |
3. | Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom |
References:
[1] |
J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[2] |
J. Inst. Math. Jussieu, 12 (2013), 651-676.
doi: 10.1017/S1474748012000862. |
[3] |
Discrete Comp. Geometry, 47 (2012), 496-518.
doi: 10.1007/s00454-011-9376-2. |
[4] |
W. Castryck and F. Cools, Linear pencils encoded in the Newton polygon,, preprint., (). Google Scholar |
[5] |
Int. Math. Res. Pap., 2006, (2006), 1-57. |
[6] |
Proc. London Math. Soc., 104 (2012), 1235-1270.
doi: 10.1112/plms/pdr063. |
[7] |
Algebra Number Theory, 3 (2009), 255-281.
doi: 10.2140/ant.2009.3.255. |
[8] |
Springer, 2011. |
[9] |
in Proc. Adv. Cryptology - CRYPTO 2002, 2003, 308-323.
doi: 10.1007/3-540-45455-1_25. |
[10] |
Finite Fields App., 12 (2006), 78-102.
doi: 10.1016/j.ffa.2005.01.003. |
[11] |
Algebra Number Theory, 7 (2013), 507-532.
doi: 10.2140/ant.2013.7.507. |
[12] |
Linear Algebra Appl., 439 (2013), 2158-2166.
doi: 10.1016/j.laa.2013.06.012. |
[13] |
Amer. Math. Monthly, 116 (2009), 151-165.
doi: 10.4169/193009709X469913. |
[14] |
J. Math. Kyoto Univ., 26 (1986), 375-386. |
[15] |
AMS, 1998. |
[16] |
in Algorithms and Computation in Mathematics, Springer, 1999.
doi: 10.1007/978-3-662-03642-6. |
[17] |
Ph.D thesis, Katholieke Universiteit Nijmegen, 1991. Google Scholar |
[18] |
Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 153-172. |
[19] |
Ann. Sci. de l'É.N.S., 4 (1971), 181-192. |
[20] |
Math. Res. Lett., 7 (2000), 77-82.
doi: 10.4310/MRL.2000.v7.n1.a7. |
[21] |
Ann. Math., 160 (2004), 1099-1127.
doi: 10.4007/annals.2004.160.1099. |
[22] |
Ann. l'Institut Fourier, 62 (2012), 707-726.
doi: 10.5802/aif.2692. |
[23] |
Int. Math. Res. Not., 2002 (2002), 905-917.
doi: 10.1155/S1073792802111160. |
[24] |
in Oeuvres (collected papers), Springer, 1986, 544-568. Google Scholar |
[25] |
J. reine angew. Math., 377 (1987), 49-64.
doi: 10.1515/crll.1987.377.49. |
[26] |
Proc. Amer. Math. Soc., 134 (2006), 323-331.
doi: 10.1090/S0002-9939-05-08294-8. |
show all references
References:
[1] |
J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[2] |
J. Inst. Math. Jussieu, 12 (2013), 651-676.
doi: 10.1017/S1474748012000862. |
[3] |
Discrete Comp. Geometry, 47 (2012), 496-518.
doi: 10.1007/s00454-011-9376-2. |
[4] |
W. Castryck and F. Cools, Linear pencils encoded in the Newton polygon,, preprint., (). Google Scholar |
[5] |
Int. Math. Res. Pap., 2006, (2006), 1-57. |
[6] |
Proc. London Math. Soc., 104 (2012), 1235-1270.
doi: 10.1112/plms/pdr063. |
[7] |
Algebra Number Theory, 3 (2009), 255-281.
doi: 10.2140/ant.2009.3.255. |
[8] |
Springer, 2011. |
[9] |
in Proc. Adv. Cryptology - CRYPTO 2002, 2003, 308-323.
doi: 10.1007/3-540-45455-1_25. |
[10] |
Finite Fields App., 12 (2006), 78-102.
doi: 10.1016/j.ffa.2005.01.003. |
[11] |
Algebra Number Theory, 7 (2013), 507-532.
doi: 10.2140/ant.2013.7.507. |
[12] |
Linear Algebra Appl., 439 (2013), 2158-2166.
doi: 10.1016/j.laa.2013.06.012. |
[13] |
Amer. Math. Monthly, 116 (2009), 151-165.
doi: 10.4169/193009709X469913. |
[14] |
J. Math. Kyoto Univ., 26 (1986), 375-386. |
[15] |
AMS, 1998. |
[16] |
in Algorithms and Computation in Mathematics, Springer, 1999.
doi: 10.1007/978-3-662-03642-6. |
[17] |
Ph.D thesis, Katholieke Universiteit Nijmegen, 1991. Google Scholar |
[18] |
Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 153-172. |
[19] |
Ann. Sci. de l'É.N.S., 4 (1971), 181-192. |
[20] |
Math. Res. Lett., 7 (2000), 77-82.
doi: 10.4310/MRL.2000.v7.n1.a7. |
[21] |
Ann. Math., 160 (2004), 1099-1127.
doi: 10.4007/annals.2004.160.1099. |
[22] |
Ann. l'Institut Fourier, 62 (2012), 707-726.
doi: 10.5802/aif.2692. |
[23] |
Int. Math. Res. Not., 2002 (2002), 905-917.
doi: 10.1155/S1073792802111160. |
[24] |
in Oeuvres (collected papers), Springer, 1986, 544-568. Google Scholar |
[25] |
J. reine angew. Math., 377 (1987), 49-64.
doi: 10.1515/crll.1987.377.49. |
[26] |
Proc. Amer. Math. Soc., 134 (2006), 323-331.
doi: 10.1090/S0002-9939-05-08294-8. |
[1] |
Laurenţiu Maxim, Jörg Schürmann. Characteristic classes of singular toric varieties. Electronic Research Announcements, 2013, 20: 109-120. doi: 10.3934/era.2013.20.109 |
[2] |
Sylvain E. Cappell, Anatoly Libgober, Laurentiu Maxim and Julius L. Shaneson. Hodge genera and characteristic classes of complex algebraic varieties. Electronic Research Announcements, 2008, 15: 1-7. doi: 10.3934/era.2008.15.1 |
[3] |
Josep M. Miret, Jordi Pujolàs, Nicolas Thériault. Trisection for supersingular genus $2$ curves in characteristic $2$. Advances in Mathematics of Communications, 2014, 8 (4) : 375-387. doi: 10.3934/amc.2014.8.375 |
[4] |
B. Harbourne, P. Pokora, H. Tutaj-Gasińska. On integral Zariski decompositions of pseudoeffective divisors on algebraic surfaces. Electronic Research Announcements, 2015, 22: 103-108. doi: 10.3934/era.2015.22.103 |
[5] |
Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755 |
[6] |
Carlos Munuera, Wanderson Tenório, Fernando Torres. Locally recoverable codes from algebraic curves with separated variables. Advances in Mathematics of Communications, 2020, 14 (2) : 265-278. doi: 10.3934/amc.2020019 |
[7] |
Jędrzej Śniatycki. Integral curves of derivations on locally semi-algebraic differential spaces. Conference Publications, 2003, 2003 (Special) : 827-833. doi: 10.3934/proc.2003.2003.827 |
[8] |
Piotr Pokora, Tomasz Szemberg. Minkowski bases on algebraic surfaces with rational polyhedral pseudo-effective cone. Electronic Research Announcements, 2014, 21: 126-131. doi: 10.3934/era.2014.21.126 |
[9] |
J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford and Masahico Saito. State-sum invariants of knotted curves and surfaces from quandle cohomology. Electronic Research Announcements, 1999, 5: 146-156. |
[10] |
Ryutaroh Matsumoto. Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields. Advances in Mathematics of Communications, 2019, 13 (1) : 1-10. doi: 10.3934/amc.2019001 |
[11] |
Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405 |
[12] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[13] |
Sonja Hohloch. Characterization of toric systems via transport costs. Journal of Geometric Mechanics, 2020, 12 (3) : 447-454. doi: 10.3934/jgm.2020027 |
[14] |
Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911 |
[15] |
Sonja Hohloch, Silvia Sabatini, Daniele Sepe. From compact semi-toric systems to Hamiltonian $S^1$-spaces. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 247-281. doi: 10.3934/dcds.2015.35.247 |
[16] |
Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 |
[17] |
Naoki Chigira, Nobuo Iiyori and Hiroyoshi Yamaki. Nonabelian Sylow subgroups of finite groups of even order. Electronic Research Announcements, 1998, 4: 88-90. |
[18] |
T. Aaron Gulliver, Masaaki Harada. On the performance of optimal double circulant even codes. Advances in Mathematics of Communications, 2017, 11 (4) : 767-775. doi: 10.3934/amc.2017056 |
[19] |
Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 |
[20] |
Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]