- Previous Article
- AMC Home
- This Issue
-
Next Article
On the irreducibility of the hyperplane sections of Fermat varieties in $\mathbb{P}^3$ in characteristic $2$
Splitting of abelian varieties
1. | Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Canada M5S 2E4, Canada, Canada |
References:
[1] |
Comptes Rendus Acad. Sci. Paris, 290 (1980), 701-703. |
[2] |
Hermann, Paris, 1975. |
[3] |
J. Pure Appl. Algebra, 155 (2001), 115-120.
doi: 10.1016/S0022-4049(99)00096-1. |
[4] |
Acta Arith., 119 (2005), 265-289.
doi: 10.4064/aa119-3-3. |
[5] |
Forum Math., 24 (2012), 99-119.
doi: 10.1515/form.2011.051. |
[6] |
in Proc. Symp. Pure Math. (eds. A. Borel and W. Casselman), AMS, Providence, 1979, 247-289. |
[7] |
Invent. Math., 73(1983), 349-366.
doi: 10.1007/BF01388432. |
[8] |
Springer, Berlin, 1971. |
[9] |
Invent. Math., 62 (1981), 481-502.
doi: 10.1007/BF01394256. |
[10] |
Pacific J. Math., 131 (1988),157-165.
doi: 10.2140/pjm.1988.131.157. |
[11] |
in INDOCRYPT 2001, Springer, Berlin, 2001, 91-98.
doi: 10.1007/3-540-45311-3_9. |
[12] |
Forum Math., 6 (1994), 555-565.
doi: 10.1515/form.1994.6.555. |
[13] |
Intl. Math. Res. Notices, 12 (2008), Article ID rnn 033, 27 pp.
doi: 10.1093/imrn/rnn033. |
[14] |
V. Kumar Murty and Y. Zong, Splitting of abelian varieties, elliptic minuscule pairs,, preprint, (). Google Scholar |
[15] |
J. Number Theory, 16 (1983), 147-168.
doi: 10.1016/0022-314X(83)90039-2. |
[16] |
in Sieve methods, exponential sums, and their applications in number theory (eds. G.R.H. Greaves, G. Harman and M.N. Huxley), Cambridge Univ. Press, Cambridge, 1996, 325-344.
doi: 10.1017/CBO9780511526091.022. |
[17] |
in Séminaire Bourbaki, Springer, Heidelberg, 1971, 95-110. |
[18] |
in Proc. Sympos. Pure Math. (eds. A. Borel and G. Mostow), AMS, Providence, 1966, 33-62. |
[19] |
in Algorithmic Number Theory, Springer, Berlin, 2008, 74-87.
doi: 10.1007/978-3-540-79456-1_4. |
show all references
References:
[1] |
Comptes Rendus Acad. Sci. Paris, 290 (1980), 701-703. |
[2] |
Hermann, Paris, 1975. |
[3] |
J. Pure Appl. Algebra, 155 (2001), 115-120.
doi: 10.1016/S0022-4049(99)00096-1. |
[4] |
Acta Arith., 119 (2005), 265-289.
doi: 10.4064/aa119-3-3. |
[5] |
Forum Math., 24 (2012), 99-119.
doi: 10.1515/form.2011.051. |
[6] |
in Proc. Symp. Pure Math. (eds. A. Borel and W. Casselman), AMS, Providence, 1979, 247-289. |
[7] |
Invent. Math., 73(1983), 349-366.
doi: 10.1007/BF01388432. |
[8] |
Springer, Berlin, 1971. |
[9] |
Invent. Math., 62 (1981), 481-502.
doi: 10.1007/BF01394256. |
[10] |
Pacific J. Math., 131 (1988),157-165.
doi: 10.2140/pjm.1988.131.157. |
[11] |
in INDOCRYPT 2001, Springer, Berlin, 2001, 91-98.
doi: 10.1007/3-540-45311-3_9. |
[12] |
Forum Math., 6 (1994), 555-565.
doi: 10.1515/form.1994.6.555. |
[13] |
Intl. Math. Res. Notices, 12 (2008), Article ID rnn 033, 27 pp.
doi: 10.1093/imrn/rnn033. |
[14] |
V. Kumar Murty and Y. Zong, Splitting of abelian varieties, elliptic minuscule pairs,, preprint, (). Google Scholar |
[15] |
J. Number Theory, 16 (1983), 147-168.
doi: 10.1016/0022-314X(83)90039-2. |
[16] |
in Sieve methods, exponential sums, and their applications in number theory (eds. G.R.H. Greaves, G. Harman and M.N. Huxley), Cambridge Univ. Press, Cambridge, 1996, 325-344.
doi: 10.1017/CBO9780511526091.022. |
[17] |
in Séminaire Bourbaki, Springer, Heidelberg, 1971, 95-110. |
[18] |
in Proc. Sympos. Pure Math. (eds. A. Borel and G. Mostow), AMS, Providence, 1966, 33-62. |
[19] |
in Algorithmic Number Theory, Springer, Berlin, 2008, 74-87.
doi: 10.1007/978-3-540-79456-1_4. |
[1] |
H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50 |
[2] |
Hyeng Keun Koo, Shanjian Tang, Zhou Yang. A Dynkin game under Knightian uncertainty. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5467-5498. doi: 10.3934/dcds.2015.35.5467 |
[3] |
Elisa Gorla, Maike Massierer. Index calculus in the trace zero variety. Advances in Mathematics of Communications, 2015, 9 (4) : 515-539. doi: 10.3934/amc.2015.9.515 |
[4] |
Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327 |
[5] |
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017 |
[6] |
Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066 |
[7] |
Rüdiger Achilles, Andrea Bonfiglioli, Jacob Katriel. The $\boldsymbol{q}$-deformed Campbell-Baker-Hausdorff-Dynkin theorem. Electronic Research Announcements, 2015, 22: 32-45. doi: 10.3934/era.2015.22.32 |
[8] |
Bachir Bar, Tewfik Sari. The operating diagram for a model of competition in a chemostat with an external lethal inhibitor. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2093-2120. doi: 10.3934/dcdsb.2019203 |
[9] |
Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665 |
[10] |
Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050 |
[11] |
Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523 |
[12] |
John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443 |
[13] |
Ser Peow Tan, Yan Loi Wong and Ying Zhang. The SL(2, C) character variety of a one-holed torus. Electronic Research Announcements, 2005, 11: 103-110. |
[14] |
Chad Schoen. An arithmetic ball quotient surface whose Albanese variety is not of CM type. Electronic Research Announcements, 2014, 21: 132-136. doi: 10.3934/era.2014.21.132 |
[15] |
Sandra Carillo, Mauro Lo Schiavo, Cornelia Schiebold. Abelian versus non-Abelian Bäcklund charts: Some remarks. Evolution Equations & Control Theory, 2019, 8 (1) : 43-55. doi: 10.3934/eect.2019003 |
[16] |
Magdalena Czubak, Robert L. Jerrard. Topological defects in the abelian Higgs model. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1933-1968. doi: 10.3934/dcds.2015.35.1933 |
[17] |
Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139 |
[18] |
S. Eigen, V. S. Prasad. Tiling Abelian groups with a single tile. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 361-365. doi: 10.3934/dcds.2006.16.361 |
[19] |
Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420 |
[20] |
Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10. |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]