-
Previous Article
Pattern formation in a cross-diffusion system
- DCDS Home
- This Issue
-
Next Article
Invasion entire solutions in a competition system with nonlocal dispersal
Spiraling bifurcation diagrams in superlinear indefinite problems
1. | Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040-Madrid |
2. | Departamento de Matemáticas, Universidad Carlos III de Madrid Campus de Leganés, Avda. Universidad 30, 28911 Leganés, Madrid |
3. | Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid |
References:
[1] |
S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.
doi: 10.1006/jfan.1996.0125. |
[2] |
E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM Classics in Applied Mathematics 45, SIAM, Philadelphia, 2003.
doi: 10.1137/1.9780898719154. |
[3] |
H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Diff. Eqns., 146 (1998), 336-374.
doi: 10.1006/jdeq.1998.3440. |
[4] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Top. Meth. Nonl. Anal., 4 (1994), 59-78. |
[5] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, Nonl. Diff. Eqns. Appns., 2 (1995), 553-572.
doi: 10.1007/BF01210623. |
[6] |
M. D. Bertness and R. M. Callaway, Positive interactions in communities, Trends in Ecology and Evolution, 9 (1994), 191-193.
doi: 10.1016/0169-5347(94)90088-4. |
[7] |
F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of Nonsingular Solutions, Numer. Math., 36 (1980), 1-25.
doi: 10.1007/BF01395985. |
[8] |
F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part II: Limit Points, Numer. Math., 37 (1981), 1-28.
doi: 10.1007/BF01396184. |
[9] |
F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part III: Simple bifurcation points, Numer. Math., 38 (1981), 1-30.
doi: 10.1007/BF01395805. |
[10] |
R. M. Callaway and L. R. Walker, Competition and facilitation: A synthetic approach to interactions in plant communities, Ecology, 78 (1997), 1958-1965.
doi: 10.2307/2265936. |
[11] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006. |
[12] |
A. Casal, J. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Diff. Int. Eqns., 7 (1994), 411-439. |
[13] |
J. H. Connell, On the prevalence and relative importance of interspecific competition: evidence from field experiments, Amer. Natur., 122 (1983), 661-696.
doi: 10.1086/284165. |
[14] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[15] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation from simple eigenvalues and linearized stability, Arch. Rat. Mech. Anal., 52 (1973), 161-180. |
[16] |
M. Crouzeix and J. Rappaz, On Numerical Approximation in Bifurcation Theory, Recherches en Mathématiques Appliquées 13. Masson, Paris, 1990. |
[17] |
J. C. Eilbeck, The pseudo-spectral method and path-following in reaction-diffusion bifurcation studies, SIAM J. of Sci. Stat. Comput., 7 (1986), 599-610.
doi: 10.1137/0907040. |
[18] |
J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights, J. Funct. Anal., 261 (2011), 1775-1798.
doi: 10.1016/j.jfa.2011.05.018. |
[19] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, Berlin-Heidelberg, 2001. |
[20] |
M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., 32 (1979), 21-98.
doi: 10.1002/cpa.3160320103. |
[21] |
M. Golubitsky and D. G. Shaeffer, Singularity and Groups in Bifurcation Theory, Springer, 1985. |
[22] |
R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations, J. Diff. Eqns., 167 (2000), 36-72.
doi: 10.1006/jdeq.2000.3772. |
[23] |
R. Gómez-Reñasco and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations, Diff. Int. Eqns., 14 (2001), 751-768. |
[24] |
G. E. Hutchinson, The Ecological Theater and the Evolutionary Play, Yale University Press, New Haven, Connecticut, 1965. |
[25] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer, 1995. |
[26] |
H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Tata Insitute of Fundamental Research, Springer, Berlin, 1987. |
[27] |
J. López-Gómez, Estabilidad y Bifurcación Estática. Aplicaciones y Métodos Numéricos, Cuadernos de Matemática y Mecánica, Serie Cursos y Seminarios No 4, Santa Fe, 1988. |
[28] |
J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems, Comm. Part. Diff. Eqns., 22 (1997), 1787-1804.
doi: 10.1080/03605309708821320. |
[29] |
J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems, Trans. Amer. Math. Soc., 352 (2000), 1825-1858.
doi: 10.1090/S0002-9947-99-02352-1. |
[30] |
J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems, Sci. Math. Jpn., 61 (2005), 493-516. |
[31] |
J. López-Gómez, Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra. Stationary partial differential equations, in Handbook of Differential Equations: Stationary partial differential equations. Vol. II (eds. M. Chipot and P. Quittner), Elsevier, II (2005), 211-309.
doi: 10.1016/S1874-5733(05)80012-9. |
[32] |
J. López-Gómez, Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Diff. Eqns., 224 (2006), 385-439.
doi: 10.1016/j.jde.2005.08.008. |
[33] |
J. López-Gómez, J. C. Eilbeck, K. Duncan and M. Molina-Meyer, Structure of solution manifolds in a strongly coupled elliptic system, IMA Conference on Dynamics of Numerics and Numerics of Dynamics (Bristol, 1990), IMA J. Numer. Anal., 12 (1992), 405-428.
doi: 10.1093/imanum/12.3.405. |
[34] |
J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Diff. Int. Eqns., 7 (1994), 383-398. |
[35] |
J. López-Gómez and M. Molina-Meyer, Superlinear indefinite systems: Beyond Lotka-Volterra models, J. Diff. Eqns., 221 (2006), 343-411.
doi: 10.1016/j.jde.2005.05.009. |
[36] |
J. López-Gómez and M. Molina-Meyer, The competitive exclusion principle versus biodiversity through segregation and further adaptation to spatial heterogeneities, Theoretical Population Biology, 69 (2006), 94-109. |
[37] |
J. López-Gómez and M. Molina-Meyer, Biodiversity through co-opetition, Discrete and Continuous Dynamical Systems B, 8 (2007), 187-205.
doi: 10.3934/dcdsb.2007.8.187. |
[38] |
J. López-Gómez and M. Molina-Meyer, Modeling coopetition, Mathematics and Computers in Simulation, 76 (2007), 132-140.
doi: 10.1016/j.matcom.2007.01.035. |
[39] |
J. López-Gómez, M. Molina-Meyer and A. Tellini, The uniqueness of the linearly stable positive solution for a class of superlinear indefinite problems with nonhomogeneous boundary conditions, J. Diff. Eqns., 255 (2013), 503-523.
doi: 10.1016/j.jde.2013.04.019. |
[40] |
J. López-Gómez, M. Molina-Meyer and M. Villareal, Numerical computation of coexistence states, SIAM J. Numer. Anal., 29 (1992), 1074-1092.
doi: 10.1137/0729065. |
[41] |
J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems, Comm. Pure Appl. Anal., 13 (2014), 1-73.
doi: 10.3934/cpaa.2014.13.1. |
[42] |
J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight, J. Diff. Eqns., 188 (2003), 33-51.
doi: 10.1016/S0022-0396(02)00073-6. |
[43] |
L. Ping, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600.
doi: 10.1016/j.jfa.2007.06.015. |
[44] |
F. I. Pugnaire (Editor), Positive Plant Interactions and Community Dynamics, Fundación BBVA, CRC Press, Boca Raton, 2010. |
[45] |
M. B. Saffo, Invertebrates in endosymbiotic associations, Amer. Zool., 32 (1992), 557-565.
doi: 10.1093/icb/32.4.557. |
[46] |
T. W. Shoener, Field experiments on interspecific competition, Amer. Natur., 122 (1983), 240-285.
doi: 10.1086/284133. |
[47] |
J. L. Wulff, Clonal organisms and the evolution of mutualism. In Jackson, J.B.C., Buss, L.W., Cook, R.E. (Eds.), Population Biology and Evolution of Clonal Organisms, 437-466, Yale University Press, New Haven, Connecticut, 1985. |
show all references
References:
[1] |
S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.
doi: 10.1006/jfan.1996.0125. |
[2] |
E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM Classics in Applied Mathematics 45, SIAM, Philadelphia, 2003.
doi: 10.1137/1.9780898719154. |
[3] |
H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Diff. Eqns., 146 (1998), 336-374.
doi: 10.1006/jdeq.1998.3440. |
[4] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Top. Meth. Nonl. Anal., 4 (1994), 59-78. |
[5] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, Nonl. Diff. Eqns. Appns., 2 (1995), 553-572.
doi: 10.1007/BF01210623. |
[6] |
M. D. Bertness and R. M. Callaway, Positive interactions in communities, Trends in Ecology and Evolution, 9 (1994), 191-193.
doi: 10.1016/0169-5347(94)90088-4. |
[7] |
F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of Nonsingular Solutions, Numer. Math., 36 (1980), 1-25.
doi: 10.1007/BF01395985. |
[8] |
F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part II: Limit Points, Numer. Math., 37 (1981), 1-28.
doi: 10.1007/BF01396184. |
[9] |
F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part III: Simple bifurcation points, Numer. Math., 38 (1981), 1-30.
doi: 10.1007/BF01395805. |
[10] |
R. M. Callaway and L. R. Walker, Competition and facilitation: A synthetic approach to interactions in plant communities, Ecology, 78 (1997), 1958-1965.
doi: 10.2307/2265936. |
[11] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006. |
[12] |
A. Casal, J. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Diff. Int. Eqns., 7 (1994), 411-439. |
[13] |
J. H. Connell, On the prevalence and relative importance of interspecific competition: evidence from field experiments, Amer. Natur., 122 (1983), 661-696.
doi: 10.1086/284165. |
[14] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[15] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation from simple eigenvalues and linearized stability, Arch. Rat. Mech. Anal., 52 (1973), 161-180. |
[16] |
M. Crouzeix and J. Rappaz, On Numerical Approximation in Bifurcation Theory, Recherches en Mathématiques Appliquées 13. Masson, Paris, 1990. |
[17] |
J. C. Eilbeck, The pseudo-spectral method and path-following in reaction-diffusion bifurcation studies, SIAM J. of Sci. Stat. Comput., 7 (1986), 599-610.
doi: 10.1137/0907040. |
[18] |
J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights, J. Funct. Anal., 261 (2011), 1775-1798.
doi: 10.1016/j.jfa.2011.05.018. |
[19] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, Berlin-Heidelberg, 2001. |
[20] |
M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., 32 (1979), 21-98.
doi: 10.1002/cpa.3160320103. |
[21] |
M. Golubitsky and D. G. Shaeffer, Singularity and Groups in Bifurcation Theory, Springer, 1985. |
[22] |
R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations, J. Diff. Eqns., 167 (2000), 36-72.
doi: 10.1006/jdeq.2000.3772. |
[23] |
R. Gómez-Reñasco and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations, Diff. Int. Eqns., 14 (2001), 751-768. |
[24] |
G. E. Hutchinson, The Ecological Theater and the Evolutionary Play, Yale University Press, New Haven, Connecticut, 1965. |
[25] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer, 1995. |
[26] |
H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Tata Insitute of Fundamental Research, Springer, Berlin, 1987. |
[27] |
J. López-Gómez, Estabilidad y Bifurcación Estática. Aplicaciones y Métodos Numéricos, Cuadernos de Matemática y Mecánica, Serie Cursos y Seminarios No 4, Santa Fe, 1988. |
[28] |
J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems, Comm. Part. Diff. Eqns., 22 (1997), 1787-1804.
doi: 10.1080/03605309708821320. |
[29] |
J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems, Trans. Amer. Math. Soc., 352 (2000), 1825-1858.
doi: 10.1090/S0002-9947-99-02352-1. |
[30] |
J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems, Sci. Math. Jpn., 61 (2005), 493-516. |
[31] |
J. López-Gómez, Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra. Stationary partial differential equations, in Handbook of Differential Equations: Stationary partial differential equations. Vol. II (eds. M. Chipot and P. Quittner), Elsevier, II (2005), 211-309.
doi: 10.1016/S1874-5733(05)80012-9. |
[32] |
J. López-Gómez, Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Diff. Eqns., 224 (2006), 385-439.
doi: 10.1016/j.jde.2005.08.008. |
[33] |
J. López-Gómez, J. C. Eilbeck, K. Duncan and M. Molina-Meyer, Structure of solution manifolds in a strongly coupled elliptic system, IMA Conference on Dynamics of Numerics and Numerics of Dynamics (Bristol, 1990), IMA J. Numer. Anal., 12 (1992), 405-428.
doi: 10.1093/imanum/12.3.405. |
[34] |
J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Diff. Int. Eqns., 7 (1994), 383-398. |
[35] |
J. López-Gómez and M. Molina-Meyer, Superlinear indefinite systems: Beyond Lotka-Volterra models, J. Diff. Eqns., 221 (2006), 343-411.
doi: 10.1016/j.jde.2005.05.009. |
[36] |
J. López-Gómez and M. Molina-Meyer, The competitive exclusion principle versus biodiversity through segregation and further adaptation to spatial heterogeneities, Theoretical Population Biology, 69 (2006), 94-109. |
[37] |
J. López-Gómez and M. Molina-Meyer, Biodiversity through co-opetition, Discrete and Continuous Dynamical Systems B, 8 (2007), 187-205.
doi: 10.3934/dcdsb.2007.8.187. |
[38] |
J. López-Gómez and M. Molina-Meyer, Modeling coopetition, Mathematics and Computers in Simulation, 76 (2007), 132-140.
doi: 10.1016/j.matcom.2007.01.035. |
[39] |
J. López-Gómez, M. Molina-Meyer and A. Tellini, The uniqueness of the linearly stable positive solution for a class of superlinear indefinite problems with nonhomogeneous boundary conditions, J. Diff. Eqns., 255 (2013), 503-523.
doi: 10.1016/j.jde.2013.04.019. |
[40] |
J. López-Gómez, M. Molina-Meyer and M. Villareal, Numerical computation of coexistence states, SIAM J. Numer. Anal., 29 (1992), 1074-1092.
doi: 10.1137/0729065. |
[41] |
J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems, Comm. Pure Appl. Anal., 13 (2014), 1-73.
doi: 10.3934/cpaa.2014.13.1. |
[42] |
J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight, J. Diff. Eqns., 188 (2003), 33-51.
doi: 10.1016/S0022-0396(02)00073-6. |
[43] |
L. Ping, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600.
doi: 10.1016/j.jfa.2007.06.015. |
[44] |
F. I. Pugnaire (Editor), Positive Plant Interactions and Community Dynamics, Fundación BBVA, CRC Press, Boca Raton, 2010. |
[45] |
M. B. Saffo, Invertebrates in endosymbiotic associations, Amer. Zool., 32 (1992), 557-565.
doi: 10.1093/icb/32.4.557. |
[46] |
T. W. Shoener, Field experiments on interspecific competition, Amer. Natur., 122 (1983), 240-285.
doi: 10.1086/284133. |
[47] |
J. L. Wulff, Clonal organisms and the evolution of mutualism. In Jackson, J.B.C., Buss, L.W., Cook, R.E. (Eds.), Population Biology and Evolution of Clonal Organisms, 437-466, Yale University Press, New Haven, Connecticut, 1985. |
[1] |
Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics. Conference Publications, 2013, 2013 (special) : 515-524. doi: 10.3934/proc.2013.2013.515 |
[2] |
Julián López-Góme, Andrea Tellini, F. Zanolin. High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems. Communications on Pure and Applied Analysis, 2014, 13 (1) : 1-73. doi: 10.3934/cpaa.2014.13.1 |
[3] |
Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112 |
[4] |
Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047 |
[5] |
J. F. Toland. Path-connectedness in global bifurcation theory. Electronic Research Archive, 2021, 29 (6) : 4199-4213. doi: 10.3934/era.2021079 |
[6] |
Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561 |
[7] |
Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050 |
[8] |
Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505 |
[9] |
Tatsuki Mori, Kousuke Kuto, Masaharu Nagayama, Tohru Tsujikawa, Shoji Yotsutani. Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization. Conference Publications, 2015, 2015 (special) : 861-877. doi: 10.3934/proc.2015.0861 |
[10] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[11] |
Inmaculada Antón, Julián López-Gómez. Global bifurcation diagrams of steady-states for a parabolic model related to a nuclear engineering problem. Conference Publications, 2013, 2013 (special) : 21-30. doi: 10.3934/proc.2013.2013.21 |
[12] |
Xuemei Zhang, Meiqiang Feng. Double bifurcation diagrams and four positive solutions of nonlinear boundary value problems via time maps. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2149-2171. doi: 10.3934/cpaa.2018103 |
[13] |
E. Kapsza, Gy. Károlyi, S. Kovács, G. Domokos. Regular and random patterns in complex bifurcation diagrams. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 519-540. doi: 10.3934/dcdsb.2003.3.519 |
[14] |
Po-Chun Huang, Shin-Hwa Wang, Tzung-Shin Yeh. Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2297-2318. doi: 10.3934/cpaa.2013.12.2297 |
[15] |
Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141 |
[16] |
Lucio Cadeddu, Giovanni Porru. Symmetry breaking in problems involving semilinear equations. Conference Publications, 2011, 2011 (Special) : 219-228. doi: 10.3934/proc.2011.2011.219 |
[17] |
Claudia Anedda, Giovanni Porru. Symmetry breaking and other features for Eigenvalue problems. Conference Publications, 2011, 2011 (Special) : 61-70. doi: 10.3934/proc.2011.2011.61 |
[18] |
Zeyu Xia, Xiaofeng Yang. A second order accuracy in time, Fourier pseudo-spectral numerical scheme for "Good" Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3749-3763. doi: 10.3934/dcdsb.2020089 |
[19] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29 (5) : 2915-2944. doi: 10.3934/era.2021019 |
[20] |
Tetsutaro Shibata. Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2139-2147. doi: 10.3934/cpaa.2018102 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]