2015, 35(6): 2405-2421. doi: 10.3934/dcds.2015.35.2405

Weak differentiability of scalar hysteresis operators

1. 

Fakultät für Mathematik, TU München, Boltzmannstr. 3, D 85747 Garching bei München

2. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1

Received  January 2014 Revised  May 2014 Published  December 2014

Rate independent evolutions can be formulated as operators, called hysteresis operators, between suitable function spaces. In this paper, we present some results concerning the existence and the form of directional derivatives and of Hadamard derivatives of such operators in the scalar case, that is, when the driving (input) function is a scalar function.
Citation: Martin Brokate, Pavel Krejčí. Weak differentiability of scalar hysteresis operators. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2405-2421. doi: 10.3934/dcds.2015.35.2405
References:
[1]

J.-J. Moreau, Problème d'evolution associé à un convexe mobile d'un espace hilbertien,, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973).

[2]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space,, J. Diff. Eq., 26 (1977), 347. doi: 10.1016/0022-0396(77)90085-7.

[3]

A. Mielke, Evolution of rate independent systems,, in Evolutionary Equations, II (2005), 461.

[4]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Ration. Mech. Anal., 162 (2002), 137. doi: 10.1007/s002050200194.

[5]

M. A. Krasnosel'skiĭ, B. M. Darinskiĭ, I. V. Emelin, P. P. Zabrejko, E. A. Lifshits and A. V. Pokrovskiĭ, An operator-hysterant,, Dokl. Akad. Nauk SSSR, 190 (1970), 34.

[6]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis,, Nauka, (1983).

[7]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis,, Springer, (1989). doi: 10.1007/978-3-642-61302-9.

[8]

A. Visintin, Differential models of hysteresis,, Springer, (1994). doi: 10.1007/978-3-662-11557-2.

[9]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8.

[10]

P. Krejĭ, Hysteresis, Convexity and Dissipation in Hyperbolic Equations,, Gakkōtosho, (1996).

[11]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications,, Stochastics Stochastics Rep., 35 (1991), 31. doi: 10.1080/17442509108833688.

[12]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities,, J. Convex Anal., 9 (2002), 159.

[13]

P. Krejčí, Hysteresis in singularly perturbed problems,, in Singular Perturbations and Hysteresis (eds. M.P. Mortell, (2005), 73. doi: 10.1137/1.9780898717860.ch3.

[14]

M. Brokate and P. Krejčí, Duality in the space of regulated functions and the play operator,, Math. Z., 245 (2003), 667. doi: 10.1007/s00209-003-0563-6.

[15]

R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 7 (2008), 97.

[16]

I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems,, Springer, (1972).

[17]

D. Fraňková, Regulated functions,, Math. Bohem., 116 (1991), 20.

[18]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, Z. f. angew. Math., 8 (1928), 85.

[19]

A. Yu. Ishlinskiĭ, Some applications of statistical methods to describing deformations of bodies,, Izv. AN SSSR Techn. Ser., 9 (1928), 583.

[20]

F. Preisach, Über die magnetische Nachwirkung,, Z. Phys., 94 (1935), 277.

[21]

P. Krejčí, On Maxwell equations with the Preisach operator: The one-dimensional time-periodic case,, Apl. Mat., 34 (1989), 364.

[22]

M. Brokate, Some BV properties of the Preisach hysteresis operator,, Appl. Anal., 32 (1989), 229. doi: 10.1080/00036818908839851.

show all references

References:
[1]

J.-J. Moreau, Problème d'evolution associé à un convexe mobile d'un espace hilbertien,, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973).

[2]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space,, J. Diff. Eq., 26 (1977), 347. doi: 10.1016/0022-0396(77)90085-7.

[3]

A. Mielke, Evolution of rate independent systems,, in Evolutionary Equations, II (2005), 461.

[4]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Ration. Mech. Anal., 162 (2002), 137. doi: 10.1007/s002050200194.

[5]

M. A. Krasnosel'skiĭ, B. M. Darinskiĭ, I. V. Emelin, P. P. Zabrejko, E. A. Lifshits and A. V. Pokrovskiĭ, An operator-hysterant,, Dokl. Akad. Nauk SSSR, 190 (1970), 34.

[6]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis,, Nauka, (1983).

[7]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis,, Springer, (1989). doi: 10.1007/978-3-642-61302-9.

[8]

A. Visintin, Differential models of hysteresis,, Springer, (1994). doi: 10.1007/978-3-662-11557-2.

[9]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8.

[10]

P. Krejĭ, Hysteresis, Convexity and Dissipation in Hyperbolic Equations,, Gakkōtosho, (1996).

[11]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications,, Stochastics Stochastics Rep., 35 (1991), 31. doi: 10.1080/17442509108833688.

[12]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities,, J. Convex Anal., 9 (2002), 159.

[13]

P. Krejčí, Hysteresis in singularly perturbed problems,, in Singular Perturbations and Hysteresis (eds. M.P. Mortell, (2005), 73. doi: 10.1137/1.9780898717860.ch3.

[14]

M. Brokate and P. Krejčí, Duality in the space of regulated functions and the play operator,, Math. Z., 245 (2003), 667. doi: 10.1007/s00209-003-0563-6.

[15]

R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 7 (2008), 97.

[16]

I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems,, Springer, (1972).

[17]

D. Fraňková, Regulated functions,, Math. Bohem., 116 (1991), 20.

[18]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, Z. f. angew. Math., 8 (1928), 85.

[19]

A. Yu. Ishlinskiĭ, Some applications of statistical methods to describing deformations of bodies,, Izv. AN SSSR Techn. Ser., 9 (1928), 583.

[20]

F. Preisach, Über die magnetische Nachwirkung,, Z. Phys., 94 (1935), 277.

[21]

P. Krejčí, On Maxwell equations with the Preisach operator: The one-dimensional time-periodic case,, Apl. Mat., 34 (1989), 364.

[22]

M. Brokate, Some BV properties of the Preisach hysteresis operator,, Appl. Anal., 32 (1989), 229. doi: 10.1080/00036818908839851.

[1]

Pavel Krejčí, Jürgen Sprekels. Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 283-292. doi: 10.3934/dcdss.2008.1.283

[2]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[3]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[4]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[5]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

[6]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[7]

Pavel Krejčí. The Preisach hysteresis model: Error bounds for numerical identification and inversion. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 101-119. doi: 10.3934/dcdss.2013.6.101

[8]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[9]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[10]

R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial & Management Optimization, 2006, 2 (3) : 237-254. doi: 10.3934/jimo.2006.2.237

[11]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[12]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[13]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

[14]

Julia Piantadosi, Phil Howlett, Jonathan Borwein, John Henstridge. Maximum entropy methods for generating simulated rainfall. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 233-256. doi: 10.3934/naco.2012.2.233

[15]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[16]

Huijie Qiao, Jiang-Lun Wu. On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2018215

[17]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[18]

Julia Piantadosi, Phil Howlett, John Boland. Matching the grade correlation coefficient using a copula with maximum disorder. Journal of Industrial & Management Optimization, 2007, 3 (2) : 305-312. doi: 10.3934/jimo.2007.3.305

[19]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[20]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]