• Previous Article
    Some mathematical problems related to the second order optimal shape of a crystallisation interface
  • DCDS Home
  • This Issue
  • Next Article
    On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids
2015, 35(6): 2465-2495. doi: 10.3934/dcds.2015.35.2465

A new phase field model for material fatigue in an oscillating elastoplastic beam

1. 

Dipartimento di Matematica ed Informatica “U. Dini”, viale Morgagni 67/a, I-50134 Firenze, Italy

2. 

Mathematical Institute of the Silesian University, Na Rybníčku 1, 746 01 Opava

3. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1

Received  December 2013 Revised  April 2014 Published  December 2014

We pursue the study of fatigue accumulation in an oscillating elastoplastic beam under the additional hypothesis that the material can partially recover by the effect of melting. The full system consists of the momentum and energy balance equations, an evolution equation for the fatigue rate, and a differential inclusion for the phase dynamics. The main result consists in proving the existence and uniqueness of a strong solution.
Citation: Michela Eleuteri, Jana Kopfová, Pavel Krejčí. A new phase field model for material fatigue in an oscillating elastoplastic beam. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2465-2495. doi: 10.3934/dcds.2015.35.2465
References:
[1]

S. Bosia, M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue and phase transition in a oscillating plate, "Proceedings of the 9th International Symposium on Hysteresis Modeling and Micromagnetics'',, Physica B: Condensed Matter, 435 (2014), 1.

[2]

M. Brokate, K. Dreßler and P. Krejčí, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity,, Euro. J. Mech. A/Solids, 15 (1996), 705.

[3]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Appl. Math. Sci. Vol. 121, 121 (1996). doi: 10.1007/978-1-4612-4048-8.

[4]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional thermoviscoelasticity,, SIAM J. Math. Anal., 13 (1982), 397. doi: 10.1137/0513029.

[5]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading, "Proceedings of the 8th International Symposium on Hysteresis Modeling and Micromagnetics'',, Physica B: Condensed Matter, 407 (2012), 1415.

[6]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in an oscillating plate,, Discrete Cont. Dynam. Syst., 6 (2013), 909. doi: 10.3934/dcdss.2013.6.909.

[7]

M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam,, Comm. Pure Appl. Anal., 12 (2013), 2973. doi: 10.3934/cpaa.2013.12.2973.

[8]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate,, Discrete Cont. Dynam. Syst., 19 (2014), 2091. doi: 10.3934/dcdsb.2014.19.2091.

[9]

A. Flatten, Lokale und Nicht-lokale Modellierung und Simulation thermomechanischer Lokalisierung mit Schädigung für metallische Werkstoffe unter Hochgeschwindigkeitsbeanspruchungen,, BAM-Dissertationsreihe, (2008).

[10]

A. Yu. Ishlinskii, Some applications of statistical methods to describing deformations of bodies,, Izv. Akad. Nauk SSSR, 9 (1944), 583.

[11]

J. Kopfová and P. Sander, Non-isothermal cycling fatigue in an oscillating elastoplastic beam with phase transition, "Proceedings of the 9th International Symposium on Hysteresis Modeling and Micromagnetics'',, Physica B: Condensed Matter, 435 (2014), 31.

[12]

M. A. Krasnosel'skii and A. V. Pokrovskii, Systems with Hysteresis,, Springer-Verlag, (1989). doi: 10.1007/978-3-642-61302-9.

[13]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations,, Gakuto Intern. Ser. Math. Sci. Appl., 8 (1996).

[14]

P. Krejčí and J. Sprekels, Hysteresis operators in phase-field models of Penrose-Fife type,, Appl. Math., 43 (1998), 207. doi: 10.1023/A:1023276524286.

[15]

P. Krejčí and J. Sprekels, On a system of nonlinear PDE's with temperature-dependent hysteresis in one-dimensional thermoplasticity,, J. Math. Anal. Appl., 209 (1997), 25. doi: 10.1006/jmaa.1997.5304.

[16]

P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Math. Methods Appl. Sci., 30 (2007), 2371. doi: 10.1002/mma.892.

[17]

J. Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials,, Cambridge University Press, (1990).

[18]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, Z. Ang. Math. Mech., 8 (1928), 85.

show all references

References:
[1]

S. Bosia, M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue and phase transition in a oscillating plate, "Proceedings of the 9th International Symposium on Hysteresis Modeling and Micromagnetics'',, Physica B: Condensed Matter, 435 (2014), 1.

[2]

M. Brokate, K. Dreßler and P. Krejčí, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity,, Euro. J. Mech. A/Solids, 15 (1996), 705.

[3]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Appl. Math. Sci. Vol. 121, 121 (1996). doi: 10.1007/978-1-4612-4048-8.

[4]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional thermoviscoelasticity,, SIAM J. Math. Anal., 13 (1982), 397. doi: 10.1137/0513029.

[5]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading, "Proceedings of the 8th International Symposium on Hysteresis Modeling and Micromagnetics'',, Physica B: Condensed Matter, 407 (2012), 1415.

[6]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in an oscillating plate,, Discrete Cont. Dynam. Syst., 6 (2013), 909. doi: 10.3934/dcdss.2013.6.909.

[7]

M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam,, Comm. Pure Appl. Anal., 12 (2013), 2973. doi: 10.3934/cpaa.2013.12.2973.

[8]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate,, Discrete Cont. Dynam. Syst., 19 (2014), 2091. doi: 10.3934/dcdsb.2014.19.2091.

[9]

A. Flatten, Lokale und Nicht-lokale Modellierung und Simulation thermomechanischer Lokalisierung mit Schädigung für metallische Werkstoffe unter Hochgeschwindigkeitsbeanspruchungen,, BAM-Dissertationsreihe, (2008).

[10]

A. Yu. Ishlinskii, Some applications of statistical methods to describing deformations of bodies,, Izv. Akad. Nauk SSSR, 9 (1944), 583.

[11]

J. Kopfová and P. Sander, Non-isothermal cycling fatigue in an oscillating elastoplastic beam with phase transition, "Proceedings of the 9th International Symposium on Hysteresis Modeling and Micromagnetics'',, Physica B: Condensed Matter, 435 (2014), 31.

[12]

M. A. Krasnosel'skii and A. V. Pokrovskii, Systems with Hysteresis,, Springer-Verlag, (1989). doi: 10.1007/978-3-642-61302-9.

[13]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations,, Gakuto Intern. Ser. Math. Sci. Appl., 8 (1996).

[14]

P. Krejčí and J. Sprekels, Hysteresis operators in phase-field models of Penrose-Fife type,, Appl. Math., 43 (1998), 207. doi: 10.1023/A:1023276524286.

[15]

P. Krejčí and J. Sprekels, On a system of nonlinear PDE's with temperature-dependent hysteresis in one-dimensional thermoplasticity,, J. Math. Anal. Appl., 209 (1997), 25. doi: 10.1006/jmaa.1997.5304.

[16]

P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Math. Methods Appl. Sci., 30 (2007), 2371. doi: 10.1002/mma.892.

[17]

J. Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials,, Cambridge University Press, (1990).

[18]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, Z. Ang. Math. Mech., 8 (1928), 85.

[1]

Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Fatigue accumulation in a thermo-visco-elastoplastic plate. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2091-2109. doi: 10.3934/dcdsb.2014.19.2091

[2]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[3]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[4]

Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Non-isothermal cyclic fatigue in an oscillating elastoplastic beam. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2973-2996. doi: 10.3934/cpaa.2013.12.2973

[5]

Pavel Krejčí, Jürgen Sprekels. Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 283-292. doi: 10.3934/dcdss.2008.1.283

[6]

Claude Stolz. On estimation of internal state by an optimal control approach for elastoplastic material. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 599-611. doi: 10.3934/dcdss.2016014

[7]

Alain Miranville. Some mathematical models in phase transition. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271

[8]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[9]

Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965

[10]

Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$-symmetric phase transition. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1955-1967. doi: 10.3934/dcdsb.2014.19.1955

[11]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[12]

Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[13]

I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173

[14]

Mauro Garavello, Francesca Marcellini. The Riemann problem at a junction for a phase transition traffic model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[15]

Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks & Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649

[16]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[17]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[18]

Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic & Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761

[19]

Da-Peng Li. Phase transition of oscillators and travelling waves in a class of relaxation systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2601-2614. doi: 10.3934/dcdsb.2016063

[20]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]