• Previous Article
    Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics
  • DCDS Home
  • This Issue
  • Next Article
    On regular solutions of the $3$D compressible isentropic Euler-Boltzmann equations with vacuum
2015, 35(7): 3039-3057. doi: 10.3934/dcds.2015.35.3039

Time-dependent singularities in the Navier-Stokes system

1. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław

2. 

Instytut Matematyczny, Uniwersytet Wroc lawski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Received  April 2014 Revised  October 2014 Published  January 2015

We show that, for a given Hölder continuous curve in $\{(\gamma(t),t)\,:\, t>0\} \subset \mathbb{R}^3 \times \mathbb{R}^+$, there exists a solution to the Navier-Stokes system for an incompressible fluid in $\mathbb{R}^3$ which is regular outside this curve and singular on it. This is a solution of the homogeneous system outside the curve, however, as a distributional solution on $\mathbb{R}^3 \times \mathbb{R}^+$, it solves an analogous Navier-Stokes system with a singular force concentrated on the curve.
Citation: Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039
References:
[1]

G. K. Batchelor, An Introduction to Fluid Dynamics,, Cambridge University Press, (1999).

[2]

M. Cannone and G. Karch, Smooth or singular solutions to the Navier-Stokes system?,, J. Differential Equations, 197 (2004), 247. doi: 10.1016/j.jde.2003.10.003.

[3]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, in Handbook of Mathematical Fluid Dynamics. Vol. III (eds. J. Friedlander, (2004), 161.

[4]

H. J. Choe and H. Kim, Isolated singularity for the stationary Navier-Stokes system,, J. Math. Fluid Mech., 2 (2000), 151. doi: 10.1007/PL00000951.

[5]

R. Farwig, G. P. Galdi and M. Kyed, Asymptotic structure of a Leray solution to the Navier-Stokes flow around a rotating body,, Pacific J. Math., 253 (2011), 367. doi: 10.2140/pjm.2011.253.367.

[6]

V. A. Galaktionov, On blow-up "twistors" for the Navier-Stokes equations in $\mathbbR^3$: A view from reaction-diffusion theory,, , ().

[7]

K. Hirata, Removable singularities of semilinear parabolic equations,, Proc. Amer. Math. Soc., 142 (2014), 157. doi: 10.1090/S0002-9939-2013-11739-9.

[8]

S. Y. Hsu, Removable singularites of semilinear parabolic equations,, Adv. Differential Equations, 15 (2010), 137.

[9]

G. Karch and D. Pilarczyk, Asymptotic stability of Landau solutions to Navier-Stokes system,, Arch. Rational Mech. Anal., 202 (2011), 115. doi: 10.1007/s00205-011-0409-z.

[10]

G. Karch, D. Pilarczyk and M. E. Schonbek, $L^2$-asymptotic stability of mild solutions to Navier-Stokes system in $\mathbbR^3$,, , ().

[11]

K. Kang, H. Miura and T. Tsai, Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data,, Comm. Partial Differential Equations, 37 (2012), 1717. doi: 10.1080/03605302.2012.708082.

[12]

H. Kim and H. Kozono, A removable isolated singularity theorem for the stationary Navier-Stokes equations,, J. Differential Equations, 220 (2006), 68. doi: 10.1016/j.jde.2005.02.002.

[13]

A. Korolev and V. Šverák, On the large-distance asymptotics of steady state solutions of the Navier-Stokes equations in 3D exterior domains,, Ann. Inst. H. Poincaré Anal. non Linéaire, 28 (2011), 303. doi: 10.1016/j.anihpc.2011.01.003.

[14]

H. Kozono, Removable singularities of weak solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 23 (1998), 949. doi: 10.1080/03605309808821374.

[15]

L. D. Landau, A new exact solution of Navier-Stokes equations,, C. R. (Doklady) Acad. Sci. URSS (N.S.), 43 (1944), 286.

[16]

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, (in Russian),, Nauka, (1986).

[17]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman & Hall/CRC Press, (2002). doi: 10.1201/9781420035674.

[18]

J. Leray, Sur le mouvement d'un liquide visqeux emplissant l'space,, Acta. Math., 63 (1934), 193. doi: 10.1007/BF02547354.

[19]

F. Lin, A New Proof of the Caffarelli-Kohn-Nirenberg Theorem,, Comm. Pure Appl. Math., 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.

[20]

Y. Luo and T. Tsai, Regularity criteria in weak $L^3$ for 3D incompressible Navier-Stokes equations,, , ().

[21]

H. Miura and T. Tsai, Point singularities of 3D stationary Navier-Stokes flows,, J. Math. Fluid Mech., 14 (2012), 33. doi: 10.1007/s00021-010-0046-6.

[22]

R. O'Neil, Convolution operators and $L(p,q)$ spaces,, Duke Math. J., 30 (1963), 129. doi: 10.1215/S0012-7094-63-03015-1.

[23]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness,, Academic Press, (1975).

[24]

S. Sato and E. Yanagida, Solutions with moving singularities for a semlinear parabolic equation,, J. Differential Equations, 246 (2009), 724. doi: 10.1016/j.jde.2008.09.004.

[25]

S. Sato and E. Yanagida, Asymptotic behavior of singular solutions for a semilinear parabolic equation,, Discrete Contin. Dyn. Syst., 32 (2012), 4027. doi: 10.3934/dcds.2012.32.4027.

[26]

S. Sato and E. Yanagida, Appearance of anomalous singularities in a semilinear parabolic equation,, Commun. Pure Appl. Anal., 11 (2012), 387. doi: 10.3934/cpaa.2012.11.387.

[27]

S. Sato and E. Yanagida, Singular backward self-similar solutions of a semilinear parabolic equation,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 897. doi: 10.3934/dcdss.2011.4.897.

[28]

S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation,, Discrete Contin. Dyn. Syst., 26 (2010), 313. doi: 10.3934/dcds.2010.26.313.

[29]

N. A. Slezkin, On one integrabile case for the complete differential equations of the motion of a viscous fluid,, Uchen. Zapiski Moskov. Gosud. Universiteta, 11 (1934), 89.

[30]

H. B. Squire, The round laminar jet,, Quart. J. Mech. Appl. Math., 4 (1951), 321. doi: 10.1093/qjmam/4.3.321.

[31]

V. Šverák, On Landau's solutions of the Navier-Stokes equations,, Problems in mathematical analysis, 179 (2011), 208. doi: 10.1007/s10958-011-0590-5.

[32]

J. Takahashi and E. Yanagida, Removability of time-dependent singularities in the heat equation,, , ().

[33]

G. Tian and Z. Xin, One-point singular solutions to the Navier-Stokes equations,, Topol. Meth. Nonlinear Anal., 11 (1998), 135.

show all references

References:
[1]

G. K. Batchelor, An Introduction to Fluid Dynamics,, Cambridge University Press, (1999).

[2]

M. Cannone and G. Karch, Smooth or singular solutions to the Navier-Stokes system?,, J. Differential Equations, 197 (2004), 247. doi: 10.1016/j.jde.2003.10.003.

[3]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, in Handbook of Mathematical Fluid Dynamics. Vol. III (eds. J. Friedlander, (2004), 161.

[4]

H. J. Choe and H. Kim, Isolated singularity for the stationary Navier-Stokes system,, J. Math. Fluid Mech., 2 (2000), 151. doi: 10.1007/PL00000951.

[5]

R. Farwig, G. P. Galdi and M. Kyed, Asymptotic structure of a Leray solution to the Navier-Stokes flow around a rotating body,, Pacific J. Math., 253 (2011), 367. doi: 10.2140/pjm.2011.253.367.

[6]

V. A. Galaktionov, On blow-up "twistors" for the Navier-Stokes equations in $\mathbbR^3$: A view from reaction-diffusion theory,, , ().

[7]

K. Hirata, Removable singularities of semilinear parabolic equations,, Proc. Amer. Math. Soc., 142 (2014), 157. doi: 10.1090/S0002-9939-2013-11739-9.

[8]

S. Y. Hsu, Removable singularites of semilinear parabolic equations,, Adv. Differential Equations, 15 (2010), 137.

[9]

G. Karch and D. Pilarczyk, Asymptotic stability of Landau solutions to Navier-Stokes system,, Arch. Rational Mech. Anal., 202 (2011), 115. doi: 10.1007/s00205-011-0409-z.

[10]

G. Karch, D. Pilarczyk and M. E. Schonbek, $L^2$-asymptotic stability of mild solutions to Navier-Stokes system in $\mathbbR^3$,, , ().

[11]

K. Kang, H. Miura and T. Tsai, Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data,, Comm. Partial Differential Equations, 37 (2012), 1717. doi: 10.1080/03605302.2012.708082.

[12]

H. Kim and H. Kozono, A removable isolated singularity theorem for the stationary Navier-Stokes equations,, J. Differential Equations, 220 (2006), 68. doi: 10.1016/j.jde.2005.02.002.

[13]

A. Korolev and V. Šverák, On the large-distance asymptotics of steady state solutions of the Navier-Stokes equations in 3D exterior domains,, Ann. Inst. H. Poincaré Anal. non Linéaire, 28 (2011), 303. doi: 10.1016/j.anihpc.2011.01.003.

[14]

H. Kozono, Removable singularities of weak solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 23 (1998), 949. doi: 10.1080/03605309808821374.

[15]

L. D. Landau, A new exact solution of Navier-Stokes equations,, C. R. (Doklady) Acad. Sci. URSS (N.S.), 43 (1944), 286.

[16]

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, (in Russian),, Nauka, (1986).

[17]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman & Hall/CRC Press, (2002). doi: 10.1201/9781420035674.

[18]

J. Leray, Sur le mouvement d'un liquide visqeux emplissant l'space,, Acta. Math., 63 (1934), 193. doi: 10.1007/BF02547354.

[19]

F. Lin, A New Proof of the Caffarelli-Kohn-Nirenberg Theorem,, Comm. Pure Appl. Math., 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.

[20]

Y. Luo and T. Tsai, Regularity criteria in weak $L^3$ for 3D incompressible Navier-Stokes equations,, , ().

[21]

H. Miura and T. Tsai, Point singularities of 3D stationary Navier-Stokes flows,, J. Math. Fluid Mech., 14 (2012), 33. doi: 10.1007/s00021-010-0046-6.

[22]

R. O'Neil, Convolution operators and $L(p,q)$ spaces,, Duke Math. J., 30 (1963), 129. doi: 10.1215/S0012-7094-63-03015-1.

[23]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness,, Academic Press, (1975).

[24]

S. Sato and E. Yanagida, Solutions with moving singularities for a semlinear parabolic equation,, J. Differential Equations, 246 (2009), 724. doi: 10.1016/j.jde.2008.09.004.

[25]

S. Sato and E. Yanagida, Asymptotic behavior of singular solutions for a semilinear parabolic equation,, Discrete Contin. Dyn. Syst., 32 (2012), 4027. doi: 10.3934/dcds.2012.32.4027.

[26]

S. Sato and E. Yanagida, Appearance of anomalous singularities in a semilinear parabolic equation,, Commun. Pure Appl. Anal., 11 (2012), 387. doi: 10.3934/cpaa.2012.11.387.

[27]

S. Sato and E. Yanagida, Singular backward self-similar solutions of a semilinear parabolic equation,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 897. doi: 10.3934/dcdss.2011.4.897.

[28]

S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation,, Discrete Contin. Dyn. Syst., 26 (2010), 313. doi: 10.3934/dcds.2010.26.313.

[29]

N. A. Slezkin, On one integrabile case for the complete differential equations of the motion of a viscous fluid,, Uchen. Zapiski Moskov. Gosud. Universiteta, 11 (1934), 89.

[30]

H. B. Squire, The round laminar jet,, Quart. J. Mech. Appl. Math., 4 (1951), 321. doi: 10.1093/qjmam/4.3.321.

[31]

V. Šverák, On Landau's solutions of the Navier-Stokes equations,, Problems in mathematical analysis, 179 (2011), 208. doi: 10.1007/s10958-011-0590-5.

[32]

J. Takahashi and E. Yanagida, Removability of time-dependent singularities in the heat equation,, , ().

[33]

G. Tian and Z. Xin, One-point singular solutions to the Navier-Stokes equations,, Topol. Meth. Nonlinear Anal., 11 (1998), 135.

[1]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018312

[2]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[3]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[4]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[5]

Eduard Marušić-Paloka, Igor Pažanin. Reaction of the fluid flow on time-dependent boundary perturbation. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1227-1246. doi: 10.3934/cpaa.2019059

[6]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[7]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[8]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[9]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[10]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[11]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[12]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[13]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[14]

Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255

[15]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[16]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[17]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[18]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[19]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[20]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]