February  2015, 9(1): 37-53. doi: 10.3934/amc.2015.9.37

Plaintext checkable encryption with designated checker

1. 

Department of Mathematics, St. Xavier's College, Kolkata, India

2. 

Department of Pure Mathematics, University of Calcutta, Kolkata, India

3. 

Department of Computer Science & Communication Engineering, Kyushu University, Fukuoka, Japan

Received  December 2013 Revised  September 2014 Published  February 2015

This paper introduces a new public-key primitive called designated plaintext checkable encryption (DPCE) in which given a ciphertext, a delegated checker can determine whether the ciphertext decrypts under the same public key to a plaintext chosen by himself. Motivated by various applications, two types of DPCE (of Type-I and II) are defined, depending upon whether the user delegates the plaintext checking right at his will to a delegated checker (Type-I) or the user is required to provide this plaintext checking right to a designated checker (Type-II). We propose several generic random-oracle and standard model constructions for DPCE of both the types based on arbitrary probabilistic or deterministic encryption schemes.
Citation: Angsuman Das, Avishek Adhikari, Kouichi Sakurai. Plaintext checkable encryption with designated checker. Advances in Mathematics of Communications, 2015, 9 (1) : 37-53. doi: 10.3934/amc.2015.9.37
References:
[1]

J. Baek, R. Safavi-Naini and W. Susilo, Public-key encryption with keyword search revisited, in ICCSA 2008, Part I, 2008, 1249-1259.

[2]

D. Boneh, G. D. Crescenzo, R. Ostrovsky and G. Persiano, Public-key encryption with keyword search, in EUROCRYPT 2004, 2004, 506-522. doi: 10.1007/978-3-540-24676-3_30.

[3]

E. Bresson, D. Catalano and D. Pointcheval, A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications, in ASIACRYPT 2003, 2003, 37-54. doi: 10.1007/978-3-540-40061-5_3.

[4]

G. Fuchsbauer, A. Gouget and F. Laguillaumie, Plaintext-checkable encryption, in CT-RSA 2012, 2012, 322-348. doi: 10.1007/978-3-642-27954-6_21.

[5]

S. Chow, M. Franklin and H. Zhang, Practical dual receiver encryption - soundness, complete non-malleability and applications, in CT-RSA 2014, 2014, 85-105. doi: 10.1007/978-3-319-04852-9_5.

[6]

T. Diament, H. K. Lee, A. D. Keromytis and M. Yung, The efficient dual receiver cryptosystem and its applications, Int. J. Network Secur., 12 (2011), 324-340.

[7]

T. Fuhr and P. Paillier, Decryptable searchable encryption, in ProvSec 2007, 2007, 228-236.

[8]

L. Ibraimi, S. Nikova, P. Hartel and W. Jonker, Public-key encryption with delegated search, in ACNS 2011, Springer, 2011, 532-549.

[9]

A. Peter, M. Kronberg, W. Trei and S. Katzenbeisser, Additively homomorphic encryption with a double decryption mechanism, revisited, in ISC 2012, 2012, 242-257.

[10]

C. Rackoff and D. Simon, Noninteractive zero-knowledge proof of knowledge and chosen ciphertext attack, in 22nd Ann. ACM Symp. Theory Comput., 1990, 427-437.

[11]

Q. Tang, Towards public key encryption scheme supporting equality test with fine-grained authorization, in ACISP 2011, 2011, 389-406.

[12]

G. Yang, C. H. Tan, Q, Huang and D. S. Wong, Probabilistic public key encryption with equality test, in CT-RSA 2010, Springer, 2010, 119-131. doi: 10.1007/978-3-642-11925-5_9.

show all references

References:
[1]

J. Baek, R. Safavi-Naini and W. Susilo, Public-key encryption with keyword search revisited, in ICCSA 2008, Part I, 2008, 1249-1259.

[2]

D. Boneh, G. D. Crescenzo, R. Ostrovsky and G. Persiano, Public-key encryption with keyword search, in EUROCRYPT 2004, 2004, 506-522. doi: 10.1007/978-3-540-24676-3_30.

[3]

E. Bresson, D. Catalano and D. Pointcheval, A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications, in ASIACRYPT 2003, 2003, 37-54. doi: 10.1007/978-3-540-40061-5_3.

[4]

G. Fuchsbauer, A. Gouget and F. Laguillaumie, Plaintext-checkable encryption, in CT-RSA 2012, 2012, 322-348. doi: 10.1007/978-3-642-27954-6_21.

[5]

S. Chow, M. Franklin and H. Zhang, Practical dual receiver encryption - soundness, complete non-malleability and applications, in CT-RSA 2014, 2014, 85-105. doi: 10.1007/978-3-319-04852-9_5.

[6]

T. Diament, H. K. Lee, A. D. Keromytis and M. Yung, The efficient dual receiver cryptosystem and its applications, Int. J. Network Secur., 12 (2011), 324-340.

[7]

T. Fuhr and P. Paillier, Decryptable searchable encryption, in ProvSec 2007, 2007, 228-236.

[8]

L. Ibraimi, S. Nikova, P. Hartel and W. Jonker, Public-key encryption with delegated search, in ACNS 2011, Springer, 2011, 532-549.

[9]

A. Peter, M. Kronberg, W. Trei and S. Katzenbeisser, Additively homomorphic encryption with a double decryption mechanism, revisited, in ISC 2012, 2012, 242-257.

[10]

C. Rackoff and D. Simon, Noninteractive zero-knowledge proof of knowledge and chosen ciphertext attack, in 22nd Ann. ACM Symp. Theory Comput., 1990, 427-437.

[11]

Q. Tang, Towards public key encryption scheme supporting equality test with fine-grained authorization, in ACISP 2011, 2011, 389-406.

[12]

G. Yang, C. H. Tan, Q, Huang and D. S. Wong, Probabilistic public key encryption with equality test, in CT-RSA 2010, Springer, 2010, 119-131. doi: 10.1007/978-3-642-11925-5_9.

[1]

Carla Mascia, Massimiliano Sala, Irene Villa. A survey on functional encryption. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021049

[2]

Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas López, Palash Sarkar. ${\sf {FAST}}$: Disk encryption and beyond. Advances in Mathematics of Communications, 2022, 16 (1) : 185-230. doi: 10.3934/amc.2020108

[3]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[4]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1457-1470. doi: 10.3934/dcdss.2019100

[5]

Aiwan Fan, Qiming Wang, Joyati Debnath. A high precision data encryption algorithm in wireless network mobile communication. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1327-1340. doi: 10.3934/dcdss.2019091

[6]

Vikas Srivastava, Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Saibal Kumar Pal. A multivariate identity-based broadcast encryption with applications to the internet of things. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021050

[7]

Yu-Chi Chen. Security analysis of public key encryption with filtered equality test. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021053

[8]

Yang Lu, Jiguo Li. Forward-secure identity-based encryption with direct chosen-ciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161-177. doi: 10.3934/amc.2017010

[9]

Ramprasad Sarkar, Mriganka Mandal, Sourav Mukhopadhyay. Quantum-safe identity-based broadcast encryption with provable security from multivariate cryptography. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022026

[10]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

[11]

Quan Wang, Huichao Wang. The dynamical mechanism of jets for AGN. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 943-957. doi: 10.3934/dcdsb.2016.21.943

[12]

Hideyuki Suzuki, Shunji Ito, Kazuyuki Aihara. Double rotations. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 515-532. doi: 10.3934/dcds.2005.13.515

[13]

Terry Shue Chien Lau, Chik How Tan. Polynomial-time plaintext recovery attacks on the IKKR code-based cryptosystems. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020132

[14]

Mohammad T. Manzari, Charles S. Peskin. Paradoxical waves and active mechanism in the cochlea. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4531-4552. doi: 10.3934/dcds.2016.36.4531

[15]

Antonio Pumariño, Claudia Valls. On the double pendulum: An example of double resonant situations. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 413-448. doi: 10.3934/dcds.2004.11.413

[16]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[17]

Michael Hutchings, Frank Morgan, Manuel Ritore and Antonio Ros. Proof of the double bubble conjecture. Electronic Research Announcements, 2000, 6: 45-49.

[18]

Joel Hass, Michael Hutchings and Roger Schlafly. The double bubble conjecture. Electronic Research Announcements, 1995, 1: 98-102.

[19]

Henrique Bursztyn, Alejandro Cabrera, Matias del Hoyo. Poisson double structures. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021029

[20]

Jeongsim Kim, Bara Kim. Stability of a cyclic polling system with an adaptive mechanism. Journal of Industrial and Management Optimization, 2015, 11 (3) : 763-777. doi: 10.3934/jimo.2015.11.763

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]