2015, 10(1): 1-16. doi: 10.3934/nhm.2015.10.1

Transferability of collective transportation line networks from a topological and passenger demand perspective

1. 

Interuniversity Research Center on Network Enterprise, Logistics and Transportation (CIRRELT), HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7, Canada, Canada

2. 

Department of Applied Mathematics II, Higher Technical School of Engineering. University of Seville, Camino de los Descubrimientos s/n, Seville, 41092, Spain, Spain

Received  July 2014 Revised  December 2014 Published  February 2015

We analyze the transferability of collective transportation line networks (CTLN) with the help of hypergraphs, their linearization, and connectivity measures from Complex Network Theory. In contrast to other existing works in the literature, where transferability is analyzed at a topological level, we are also concerned with passenger system level, introducing data on the travel patterns. This will allow us to have a more complete view of the functioning of the transfer system of a CTLN.
Citation: Eva Barrena, Alicia De-Los-Santos, Gilbert Laporte, Juan A. Mesa. Transferability of collective transportation line networks from a topological and passenger demand perspective. Networks & Heterogeneous Media, 2015, 10 (1) : 1-16. doi: 10.3934/nhm.2015.10.1
References:
[1]

A. Barabasi and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509. doi: 10.1126/science.286.5439.509.

[2]

E. Barrena, A. De-Los-Santos, G. Laporte and J. A. Mesa, Passenger flow connectivity in collective transportation line networks,, International Journal of Complex Systems in Science, 3 (2013), 1.

[3]

E. Barrena, A. De-Los-Santos, J. A. Mesa and F. Perea, Analyzing connectivity in collective transportation line networks by means of hypergraphs,, European Physical Journal. Special Topics, 215 (2013), 93. doi: 10.1140/epjst/e2013-01717-3.

[4]

C. Berge, Graphes et Hypergraphes,, Elsevier Science, (1973).

[5]

C. Berge, Hypergraphs: Combinatorics of Finite Sets,, North-Holland Mathematical Library, (1989).

[6]

R. Criado, B. Hernández-Bermejo and M. Romance, Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide,, International Journal of Bifurcation and Chaos, 17 (2007), 2289. doi: 10.1142/S0218127407018397.

[7]

A. De-Los-Santos, G. Laporte, J. Mesa and F. Perea, Evaluating passenger robustness in a rail transit network,, Transportation Research Part C: Emerging Technologies, 20 (2012), 34.

[8]

S. Derrible and C. Kennedy, The complexity and robustness of metro networks,, Physica A: Statistical Mechanics and its Applications, 389 (2010), 3678. doi: 10.1016/j.physa.2010.04.008.

[9]

G. Laporte, J. Mesa and F. Ortega, Assessing the efficiency of rapid transit configurations,, TOP, 5 (1997), 95. doi: 10.1007/BF02568532.

[10]

G. Laporte, J. Mesa and F. Ortega, Optimization methods for the planning of rapid transit systems,, European Journal of Operational Research, 122 (2000), 1. doi: 10.1016/S0377-2217(99)00016-8.

[11]

V. Latora and M. Marchiori, Efficient behavior of small-world networks,, Physical Review Letters, 87 (2001), 198701. doi: 10.1103/PhysRevLett.87.198701.

[12]

V. Latora and M. Marchiori, Is the Boston subway a small-world network?,, Physica A, 314 (2002), 109. doi: 10.1016/S0378-4371(02)01089-0.

[13]

S. Milgram, The small world problem,, Psychology Today, 1 (1967), 60. doi: 10.1037/e400002009-005.

[14]

C. Roth, S. Kang, M. Batty and M. Barthelemy, A long-time limit for world subway networks,, Journal of The Royal Society Interface, 9 (2012), 2540. doi: 10.1098/rsif.2012.0259.

[15]

K. Seaton and L. Hackett, Stations, trains and small-world networks,, Physica A: Statistical Mechanics and its Applications, 339 (2004), 635. doi: 10.1016/j.physa.2004.03.019.

[16]

D. Watts and S. Strogatz, Collective dynamics of small-world networks,, Nature, 393 (1998), 440.

show all references

References:
[1]

A. Barabasi and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509. doi: 10.1126/science.286.5439.509.

[2]

E. Barrena, A. De-Los-Santos, G. Laporte and J. A. Mesa, Passenger flow connectivity in collective transportation line networks,, International Journal of Complex Systems in Science, 3 (2013), 1.

[3]

E. Barrena, A. De-Los-Santos, J. A. Mesa and F. Perea, Analyzing connectivity in collective transportation line networks by means of hypergraphs,, European Physical Journal. Special Topics, 215 (2013), 93. doi: 10.1140/epjst/e2013-01717-3.

[4]

C. Berge, Graphes et Hypergraphes,, Elsevier Science, (1973).

[5]

C. Berge, Hypergraphs: Combinatorics of Finite Sets,, North-Holland Mathematical Library, (1989).

[6]

R. Criado, B. Hernández-Bermejo and M. Romance, Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide,, International Journal of Bifurcation and Chaos, 17 (2007), 2289. doi: 10.1142/S0218127407018397.

[7]

A. De-Los-Santos, G. Laporte, J. Mesa and F. Perea, Evaluating passenger robustness in a rail transit network,, Transportation Research Part C: Emerging Technologies, 20 (2012), 34.

[8]

S. Derrible and C. Kennedy, The complexity and robustness of metro networks,, Physica A: Statistical Mechanics and its Applications, 389 (2010), 3678. doi: 10.1016/j.physa.2010.04.008.

[9]

G. Laporte, J. Mesa and F. Ortega, Assessing the efficiency of rapid transit configurations,, TOP, 5 (1997), 95. doi: 10.1007/BF02568532.

[10]

G. Laporte, J. Mesa and F. Ortega, Optimization methods for the planning of rapid transit systems,, European Journal of Operational Research, 122 (2000), 1. doi: 10.1016/S0377-2217(99)00016-8.

[11]

V. Latora and M. Marchiori, Efficient behavior of small-world networks,, Physical Review Letters, 87 (2001), 198701. doi: 10.1103/PhysRevLett.87.198701.

[12]

V. Latora and M. Marchiori, Is the Boston subway a small-world network?,, Physica A, 314 (2002), 109. doi: 10.1016/S0378-4371(02)01089-0.

[13]

S. Milgram, The small world problem,, Psychology Today, 1 (1967), 60. doi: 10.1037/e400002009-005.

[14]

C. Roth, S. Kang, M. Batty and M. Barthelemy, A long-time limit for world subway networks,, Journal of The Royal Society Interface, 9 (2012), 2540. doi: 10.1098/rsif.2012.0259.

[15]

K. Seaton and L. Hackett, Stations, trains and small-world networks,, Physica A: Statistical Mechanics and its Applications, 339 (2004), 635. doi: 10.1016/j.physa.2004.03.019.

[16]

D. Watts and S. Strogatz, Collective dynamics of small-world networks,, Nature, 393 (1998), 440.

[1]

Michael Blank. Emergence of collective behavior in dynamical networks. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 313-329. doi: 10.3934/dcdsb.2013.18.313

[2]

Fabio Camilli, Raul De Maio, Andrea Tosin. Transport of measures on networks. Networks & Heterogeneous Media, 2017, 12 (2) : 191-215. doi: 10.3934/nhm.2017008

[3]

Gershon Wolansky. Limit theorems for optimal mass transportation and applications to networks. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 365-374. doi: 10.3934/dcds.2011.30.365

[4]

Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295

[5]

Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks & Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257

[6]

Massimiliano Caramia, Giovanni Storchi. Evaluating the effects of parking price and location in multi-modal transportation networks. Networks & Heterogeneous Media, 2006, 1 (3) : 441-465. doi: 10.3934/nhm.2006.1.441

[7]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[8]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[9]

F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49

[10]

Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292

[11]

Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87

[12]

Mingxing Zhou, Jing Liu, Shuai Wang, Shan He. A comparative study of robustness measures for cancer signaling networks. Big Data & Information Analytics, 2017, 2 (1) : 87-96. doi: 10.3934/bdia.2017011

[13]

Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance. Structural properties of the line-graphs associated to directed networks. Networks & Heterogeneous Media, 2012, 7 (3) : 373-384. doi: 10.3934/nhm.2012.7.373

[14]

Massimiliano Zanin, Ernestina Menasalvas, Pedro A. C. Sousa, Stefano Boccaletti. Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy. Networks & Heterogeneous Media, 2012, 7 (3) : 473-481. doi: 10.3934/nhm.2012.7.473

[15]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[16]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[17]

Regino Criado, Rosa M. Benito, Miguel Romance, Juan C. Losada. Preface: Mesoscales and evolution in complex networks: Applications and related topics. Networks & Heterogeneous Media, 2012, 7 (3) : i-iii. doi: 10.3934/nhm.2012.7.3i

[18]

Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555

[19]

Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091

[20]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

[Back to Top]