2015, 9(2): 469-478. doi: 10.3934/ipi.2015.9.469

Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data

1. 

Department of Mathematics, Statistics and Physics, Wichita State University, Wichita, KS 67260, United States

Received  April 2014 Revised  January 2015 Published  March 2015

To show increasing stability in the problem of recovering potential $c \in C^1(\Omega)$ in the Schrödinger equation with the given partial Cauchy data when energy frequency $k$ is growing, we will obtain some bounds for $c$ which can be viewed as an evidence of such phenomenon. The proof uses almost exponential solutions and methods of reflection.
Citation: Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469
References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1998), 153.

[2]

L. D. Faddeev, Growing solutions of the Schrödinger equation,, Dokl. Akad. Nauk SSSR, 165 (1965), 514.

[3]

P. Hähner, A periodic Faddeev-type solution operator,, J. Diff. Equat., 128 (1996), 300. doi: 10.1006/jdeq.1996.0096.

[4]

L. Hörmander, Linear Partial Differential Operators,, Springer-Verlag, (1976).

[5]

M. Isaev and R. Novikov, Energy and regularity dependent stability estimates for the Gelfand's inverse problem in multi dimensions,, J. Inverse Ill-Posed Problems, 20 (2012), 313. doi: 10.1155/2013/318154.

[6]

V. Isakov, S. Nagayasu, G. Uhlmann and J. N. Wang, Increasing stability of the inverse boundary value problem for the Schrödinger equation,, in \emph{Inverse Problems and Applications}, (2014), 131.

[7]

V. Isakov, Inverse Problems for Partial Differential Equations,, Springer-Verlag, (2006).

[8]

V. Isakov, Inverse Source Problems,, AMS, (1990). doi: 10.1090/surv/034.

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95. doi: 10.3934/ipi.2007.1.95.

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Newmann map,, Discr. Cont. Dyn. Syst.-S, 4 (2011), 631. doi: 10.3934/dcdss.2011.4.631.

[11]

V. Isakov and J. N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map,, Inverse Problems and Imaging, 8 (2014), 1139. doi: 10.3934/ipi.2014.8.1139.

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.

[13]

S. Nagayasu, G. Uhlmann and J. N. Wang, Increasing stability of the inverse boundary value problem for the acoustic equation,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/2/025012.

[14]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem",, J. d' Anal. Math., 91 (2003), 247. doi: 10.1007/BF02788790.

[15]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.

show all references

References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1998), 153.

[2]

L. D. Faddeev, Growing solutions of the Schrödinger equation,, Dokl. Akad. Nauk SSSR, 165 (1965), 514.

[3]

P. Hähner, A periodic Faddeev-type solution operator,, J. Diff. Equat., 128 (1996), 300. doi: 10.1006/jdeq.1996.0096.

[4]

L. Hörmander, Linear Partial Differential Operators,, Springer-Verlag, (1976).

[5]

M. Isaev and R. Novikov, Energy and regularity dependent stability estimates for the Gelfand's inverse problem in multi dimensions,, J. Inverse Ill-Posed Problems, 20 (2012), 313. doi: 10.1155/2013/318154.

[6]

V. Isakov, S. Nagayasu, G. Uhlmann and J. N. Wang, Increasing stability of the inverse boundary value problem for the Schrödinger equation,, in \emph{Inverse Problems and Applications}, (2014), 131.

[7]

V. Isakov, Inverse Problems for Partial Differential Equations,, Springer-Verlag, (2006).

[8]

V. Isakov, Inverse Source Problems,, AMS, (1990). doi: 10.1090/surv/034.

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems and Imaging, 1 (2007), 95. doi: 10.3934/ipi.2007.1.95.

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Newmann map,, Discr. Cont. Dyn. Syst.-S, 4 (2011), 631. doi: 10.3934/dcdss.2011.4.631.

[11]

V. Isakov and J. N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map,, Inverse Problems and Imaging, 8 (2014), 1139. doi: 10.3934/ipi.2014.8.1139.

[12]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.

[13]

S. Nagayasu, G. Uhlmann and J. N. Wang, Increasing stability of the inverse boundary value problem for the acoustic equation,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/2/025012.

[14]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem",, J. d' Anal. Math., 91 (2003), 247. doi: 10.1007/BF02788790.

[15]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.

[1]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[2]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[3]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[4]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[5]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[6]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[7]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[8]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[9]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[10]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[11]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[12]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[13]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[14]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[15]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[16]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[17]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[18]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[19]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[20]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]